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Abstract

A tunable diode laser is used to investigate the v 8 vibrational band of Sulfuryl Fluoride in the

11 p region. Although the absorption spectrum is doppler-limited, the resolution is high
enough to observe previously unresolved lines and therefor determine the band center and other
excited state molecular constants.

The band constants are determined by a least squares fit computer program using an S
Reduced hamiltonian to model the molecular vibration-rotation. The molecule is slightly
aspherical and requires curve fitting to thousands of lines.

The S Reduced hamiltonian, as well as other pertinent theoretical topics are discussed.
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Chapter 1

Introduction

The advent of infrared lasers hes led to unprecedented high-resolution spectroscopy in
the middle IR region. The importance of the laser in spectroscopy is evident in the study of the
molecule Sulfuryl Flucride (SF202). The availability of high-resolution data allows us to
observe previously unresolved structure, and for the first time, observe such effects as
asymmetric K splitting and the impact of nuclear spin statistics in this molecule, as well as

determine band centers and upper state molecular constants to a high degree of accuracy. In this

experiment a tunable diode laser (TDL) was used to map the spectrum of SF202 in the 11

range.

1.1 Previous Studies of SF202

Microwave studies of SF2C2 have revealed seven lines in the 20 to 30 thousand Mhz
region. Six of these lines were assigned to the rotational transitions J = 1— 2 and J=2-3
of 32‘3F202 and one line to the rotational transition j = 1 — 2 of the 34SF202 isotope. With
this data, and assuming Cyy, symmetry, the structure of SF203 was determined and the ground
state molecular constants estimated. Microwave studies have also determined that SF202 1s
slightly asymmetrical. However, due to the smallness of deviation from sphericity of SF203,
the b and c axes (prirciple axes of intermediate and greatest moments of incrtia respectively)
could not be unambiguously assigned to their respective molecular axes. In addition the

microwave dala obtained was not detailed enough to determine molecular distortion parameters

[(14].




There has also been infrared spectroscopy performed on SF203 in which band centers of
fundamental and combination vibrations have been recorded, but the transition lines themselves

were unresolved [11] [12] (see Figure 1).
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Figure 1 Infrared Spectrum of SF202 between 250 em! and 4000 em’1. From [12] [p.571].

This spectrum, recorded in 1960, fails to resolve any but the coarsest of features. This
means that, in the V¢ vibrational band for example (depicted between the arrows in Figure 1),
there are approximately 250 transitions and thousands of strong lines that lie entirely below the
instrumental resolution of the times. The power of our technique lies in our ability to take a
segment of this previously recorded spectrum and resolve completely all the transitions and

strong lines. In particular, our work resolves transitions over a wide range extending from J = 30 of

the R-branch tc | = 16 of the P-branch of the V 8 vibrational band. The significance and
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resolution of our IR data (see Figure 2 and results in Chapter 5) is apparent when compared to
the previously recorded iR spectra shown in Figure 1.

In addition to our achieved resolution (which is doppler-limited to about 60 Mhz at
room temperature), we have identified thousands of lines using a computer generated least
squares fit. Using the fit, we have been able to clarify the assignments of the b and c axes to the

appropriate SF202 molecular axes and determine the excited state inertial constants A, Band C,

the Vg band center, and the excited state distortion parameters. None of this information had
been previously available except for the Vg band center, which had been estimated (to the

nearest wavenumber) at 885 cm~1. To illustrate, some of the measured values from this

experiment are given in Table 1.

Table 1
Measured Excited State Band Constants and Vg Band Center
Band Constant Measured Value Estimated Standard
(em-1) (cm™1) f Deviation (cm-1)
Band Center 887.2185 2513x10-3
A 1710 2376x10-3
B 1691 2624x10%
C 1681 4281x104
9
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1.2 Thesis Organization
The purpose of this thesis is to identify completely the P and R-branch lines covering a
15cml range around the Q-branch of the VS vibrationzl band of SF202, and determine the

upper state rotational and centrifugal band constants as well as the V5 vibrational band center.

Normally one might expect to perform an experiment to check the validity of
theoretically derived parameters. In this experiment we have the opposite situation. Here we
are empirically deriving values from observed spectral frequencies which are then placed into
the theoretical equation. This technique is described as a reverse stochastic process in which
asymmetric rotor quantum numbers are assigned to observed transitions using available theory.
Once quantum numbers are assigned, band constants are determined by curve fiting using a
computerized least squares routine{30]. The curve to be fitted is the S-reduced hamiltonian
derived in Appendix A.

There are several steps in identifving and fitting the SF207 spectra. These steps are
covered in the various chapters of this thesis.

Chapter 2 outlines the basic theory of asymmetric molecules and establishes the
notations and conventions used in the thesis.

Chapter 3 explains the experimental -ctup and the procedure used to collect the spectra.
Also covered is the application of the basic theory to the interpretation and analysis of the
experimental spectra.

Chapter 4 covers error analysis.

The final results of the experiment are given in Chapter 3. Over 4630 lines were fitted
by the least squares fitting routine{30]. Instead of listing all 4600 lines,several representative P
and R-brarnch transitions are presented in graphical form.

The development of the S Reduced hanultonian and the wave equation solution for the

symmetric rotor are the subjects of Appendix A and B respectively

10




Chapter 2

Basic Theory

The original contribution of this thesis begins in Chapter 3 on page 36. But first, the

basic theory of asymmetric vib-rotors is given in this chapter, as follows.

2.1 The Rigid Rotor-Harmonic Oscillator Approximation!

To begin determining the band constants and fitting the observed spectra, it is necessary
to use any good approximation that is available. Oftentimes approximations can lead to
reliable estimates of such quantities as band constants or transition spacings, which can then be
inserted into a least-squares program to begin the fitting procedure from which accurate
molecular parameters are determined. Estimated quantities can also serve as a reliable means of
calculating errors and ensuring the fitting process stays accurate.

The best approximation is called the rigid rotor-harmonic oscillator approximation.

This approximation begins with the hamiltonian below (see Appendix A)

2 W2 2
(Px-Py) (p:"-?.".) (P,-p2) i 9
H= 2 D W N A, N Egpi +V (n

Py, Py and Pz are components of the total angular momentum, px, py and pz are components of the
internal angular momentum, p is the momentum associated with the kth normal vibrational

mode, and V represents the overali molecular patential. The first three terms represent the

The theory of Section 2.1 is taken from the follawing References.3] [pp. 7-91; [2] [pp. 83-84]; [25]
{pp. 266-267]; [7] [pp- 28-34].

I




rotational energy and the interaction of the rotational and internal angular momentum. The last

two terms are pure functions of the molecular vibrations.

One can make further approximations by neglecting the internal (vibrational) angular
momentum and approximating the vibrational part cf the hamiltonian 2s a harmonic osailator
potential which can be solved exactly. In this way the rotational and vibrational energres zre
completely separable and are represented by the energy levels of a rigid rotor and a harmonuc
oscillator. In this experiment the energy soiution to the vibrational part of the hamiltonian is
represented by the band center V,. The remaining (rotationz2l) part of the hamultonian is the
problem we row solve.

The energy levels of a rigid rotor are found by soiving the Schroedinger eguation:

Hpv JM8.0,7) Evi Me.o.n -

where, with zll the above zpproximations, e nos: have

2 2 2

| I M
= b = < -~
He=si_*ta*a_ 3

where J now symbolizes the total angular momentum and | designates the ngid moment of merta

about the indicated axis. An asymmetric top is definad by the relation

A

This relation ramoves the K-degenerzay of the ssmmetric rotor 2nd. 25 a resuit, complicates the
rigid rotor spectrum. Since the tot2l angular momuatum  2nd 1t projection M on 2 space-fixed
axis are constants of the motion, they are good quantum numbers and canbe used to spaafy the
state. However, the projection of | on a maleculs-fixed axis is no longer constant and thesefore we

cannot use K ta speafy the state. Instead we creste 2 parameter to indicate vanous degrees of

deviation from the symmetric prolate taxis of symmetn is the axs of feast moment of tertza)

-
s
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and symmetric oblate (axis of symmetry is the axis of greatest moment of inertia) limits. The

most common para:neter is the asymmetry parameter

2B-A-C
K=o (5)

which varies from -1 for a prolate symmetric top (B=C) to 1 for an oblate symmetric top (B=A).
The quantities A, B and C are constants inversely proportional to the least, intermediate and

greatest moments of inertia respectively. They are defined in Appendix B (see p. 117). Energy
levels are specified by the symbol J K_K - This level represents a rotational level of J which

in the limiting case connects a prolate symmetric top level of K 1 Wwithan oblate symmetric top

level of K1 (see Figure 3).

We now expand the asymmetric top cigenfunctions in combinations of symmetric top

basis functions

Yo 0 = 2A KM (6)
X

Where UKM) represents the symmetric top wave function of Equation (B-15) (see p. 117).

Substituting Equation (6) into Equation (2) vields

};A H A JKM) = E%A JTKM) 7)

13




— T

| &) <
U H
a a
| v X"
= =
E o T £
§ 3 21 5
O o
5 | __ L 5
h s 1 > 3
5_‘ c 02 O
§ L N
0 p N
01 ~,
' 11
0 0 09
[ —
| -1 9
' Figure 3 --Typical Qualitative Behavior of Asymmetric Rotor Energy Levels From [25] 1 P- 276).




The energies are the roots of the (2] + 1) x (2] + 1) secular determinant

|H -E§,.|=0 8)

KK’ KK’

where

H, .= (K 'M|H,[[KM) )

8l
At this point it is helpful to investigate the symmetry properties of the wave functions.
For this we resort to group theory. In group theoretical nomenclature, all rigid rotor wave
functions belong to representations called the external rotation group. These representations are
characterized by J and M and correspond to an infinitely large amount of possible rotations of the
space-fixed system that leave the energy invariant. The symmetric rotor, described by the
body-fixed axes, belongs to the internal rotation group D .., characterized by the quantum
numbers ] and K. For the asymmetric rotor, the hamiltonian has the character that a rotation of
180° about any axis leaves the hamiltonian unchanged [see Equation (3)]. The asymmetric top

is therefore classified as a member of the point group D 5 » also known as the Viergruppe (V)

group. This group is characterized by twofold rotations about the a, b and ¢ axes denoted by

Co(a), Ca(p)andCy(c) and the identity E (see Table 2).

Table 2
Group Characters for the D2(V) Group. From {25] [p. 26%].
Group Operations Quantum
Numbers
E C2(c) C2(b) C2(a) K_K,
1 1 1 1 ee
1 1 -1 -1 oe
1 -1 1 -1 00
1 -1 -1 1 eo




Here a, b and ¢ represent principle molecular axes of least, intermediate and greatest
moments of inertia respectively. They correspond to the inertial constants A, B and C defined in
Equa.on (B-1 * (see p. 117). The letters "e" and "o" in Table 2 stand for even and odd
respectively.

Now we examine how the [JKM) transiorm under the operations of the V group. First

we note that for SF202, ¥ = -.5 [14], which approaches the symmetric prolate limit. Therefore

it is natural to identify the X, Y, Z axes with the b,c,a axes respectively (see Table 3).

Table 3
Possible Identification of Principle Axes a, b, ¢ with Body-fixed Coordinates x, y, z.
Frorn [25] [p. 268].

Representation
Body-fixed Ia b ne
coordinates
X b c a
y c a b
z a b c

@most natural limit of a prolate symmetric rotor
b most natural for a rotor intermediate between the two limiting symmetric rotor cases
€ most natural limit of an oblate symmetric rotor

The effect of the V group operations on the UKM> is determined by their effect on the Euler

angles. We use the direction cosine matrix @ F(0,0,7) of Table B-1 to determine the effects of

each of the four operations on the Euler angles. The results are summarized in Table 4.

16




Table 4
Cartisian Coordinate and Euler Angle Transformations Under Operations of the D2(V) group.
From [25] [p. 269].

Group Operation Cartisian Coordinate Euler Angle
Transformation Transformation
E | x —=x |o—0
| Ly oy 169
| {Z—2z | ¥ =%
Ca(a) X —=-X d—0
y—=-y 6 —0
( '\ Z 52 fx =+ ]
C2(0) X ==X Oo0+ T
y—=y 8—>n—-6
I zZ—o-z Y |
C2(b) X =X d->n+0
y—=-y O—->n—-6
I lz—-2z | X =% |

In particular, we find

. : K
C2(::)!110\4)"‘8'Mé@(e)e HED = (- 1) KM

. o J-K
‘3.2(c)§]1<1‘4>°“3‘Mmm)@(n-e)elk(ﬂ W=(-1) [K™) (10)

Cv(b)UKM>°°elM(om)@(n-e)elK(-” = (- 1) JKM)

The relations in Equation (10) tell us that we cannot use the expansion (6). Instead we

must construct a basis from linear combinations of 'J,+ K, M) whose symmetry causes them to

transform the same way under the operations of the V group. If we define

pKMS) = JZ-[I]KM) + (- I)SIL—- K,M)] for- K#0and s=0,1 (11

17
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|

and

joMs) = (~ 1) JJOM) = [JOM) for K = 0and s = 0 a2

then we get
EiJKMs) = JKMs )
C pJKMs) = (= 1) JKMs)
€y JKMs) = (= 1 yKMs) (13)
0 TKMS) = (-1 KMs)

Hence the factors of Equation (8) are divided into four sub-blocks and the eigenvectors and

eigenfunctions of each sub-block correspond to one of the symmetry operations of the V group (see

Table 5).
Table 5
Asymmetric Rotor Symmetry Operations. From [25] [p. 271].
. Secular | Symmetry Designation
i Determinant
| | K ! s [ Jeven | Jodd
[ E+ Even 0 A Bz
E- Even 1 Bz A
Ot Odd 0 By By
O Odd 1 By Bx

18
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Now we must calculate the matrix elcments of HR that appear in our sub-blocks. The

commutation rules [I ] j] = eijk] Kk giveus

1
JKMT LK £ 1L,M) = 1[0 + 1) - KK+ 1] >

1

(OKMJT LK £1,M) =32 + 1) - K(K £ 1)) i (14)
(JKMJJ4JKM) = K
which imply
ORM]TATK'M) = 2(TKMIJ L {JK" MYJK" M (JK M) (15)
o

=300+ -x2B, .+ 100 +1) - (k£ 1) %[](] +1) - (K DK + 2)]%5“&2
Similarly
OKMF KM = 0+ 1) - Kb
1 1
00+ D -0 PO+ D- K DK D)5, . a6
JKMTSTK'M) =K%5 . a7

and finally, for an asymmetric rotor in the prolate limit

19
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Hy, .= {3B+000 +1 -K*]+ AK*}s .

1 1
+ {%(B QU+ -KK #5541~ (K DK £2)] Z}SKMZ

(18)
Note that for a prolate symmetric top (B = C), ‘;IKK' is diagonal.
Now let O and P be scalar quantitic.  sen we can say
_ 2, 2 2
HR(6A+p,oB+p,0C+p) = (A +p)];+ (6B + PI, + (6C +p)¢
_ 2, o2 2 2 2 L2\ 2
=o( AT+ Bl + ) +p()a+Tp +c) =0Hy o+ pJ (19)
with the eigenenergies
-0 M )
E(O’A+p,0‘B+p,0’C+p) - Gl'(abc) +p(J+ 20
Now let
__2
0=7_¢ (21)
and
- '-(A+C)
= (A-0) (22)
which imply
20




CA+p=1

GB+,0=%-_%Q- (23)
cC+p=-1

ax: give us, for Equaticn (20)

- =F =2 __ _(a:C)
E (6 atp,0B+p.0Crp) = E(1x,-1) = Bx = (A0 Eabe) ~ (a-0)J FD @8

or

=1 A -
E(abc)" 2(A+C)](]+l)+ 2(A C)E, (25)
We can now find the energies E( abe) of the rigid asymmetric rotor as follows; we still must
evaluate the secula: dcterminant in Equation (8), but we must first identify to which group

operation the J K -1K . level be” )ngs (see Table 2). In Equaiion (8), HKK’ 1 ow refers to the

hamiltonian in Equation (18), and instead of JKM) use JKMSs) from Equation (11) or

Equation (12). To find E . use the same proccdure, but substitute # =1,B=K and C=-1.

2.2 Line Strengths?

We begin our discussion using the rigid rotor-harmonic oscillator approximation. This

approximation assumes the hamiltonian can be written as

H= Hv-!-HR (26)

2The theory of Section 2.2 is taken from the following References. [3] [pp. 94-95), [26] [p. 32]; [25]
[p.82,290].
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W
and therefore the vibrational and rotational energies as

E=E,+E; (27)

This type of separation also leads to the form of the total wave function as a superposition of

two different wave functions:

§

i

I Vyr =Y VR (28)
To find selection rules and line strengths, the matrix elements of the electric moments connecting

I he vibrational-rotational states V'R' to V'R" within the same electronic states are considered.
Microwave studies have shown that, for this molecule, the permanent electric moment lies along

l the axis of symmetry, which for 2 I” 2 up representation, can be designated as the a axis (axis

I of least moment of inertia). If we call this axis the z axis, then both sets of axes: x,y,z and

X,Y.Z, representing axes fixed in the molecular and lab frames respectively, are needed to

formulate the problem.

The electric moment relative to the body-fixed z axis can be written as

M,

3 M= 04),+3(5gt) Qe o9

where (M ) , is the permanent electric moment and Q,, is the kth normal coordinate of the

l vibrational movement.

The component of the electric moment along the lab-fixed Z axis would be

M_=Mycos XZ +M ycos yZ + M ,cos zZ (30)

v. nere the direction cosines between the two coordinate systems are functions of the rotational

l coordinates alone. Generalizing, we say

L8]
o




MF= Eg"'d)Fg(e,O,’/.)Mg ; F=XIYIZ ; g=X,Y,Z (31)

Fg (0,0, ) are the direction cosines of the rotating molecule whose molecule-fixed frame is
described by the Euler angles 6,0,% .

The matrix elements of the electric moment are

(VRM V'R = [w, Wi Moy o Yp-dt (32)

Substituting Equation (31) and the generalized form of Equation (29) into Equation (32) enables

the separation of Equation (32) into two independent parts:

(VRMVRY =T (Mg) [Vi®pvpds= N(Mg) (VROEIVRY 155

g

and

L |

oM
VRM YR = T, S 5200, (i 0 veedt= SOV MR o R
' o4 k k g )
(34)

(R"® Fg !R) represents the matrix element in the F-Zirection corresponding to a unit electric

moment along the g-direction associated with the change in rotational quantum numbers from

R" toR". Assuch itis independent of the vibrational normal coordinates of the system.
(V"M V™) are the matrix elements of the electric moment along g associated with a change
in vibrational quantum numbers from V' toV " For the harmonic oscillator approximation the
eigenfunctions, the Hermite polynomials, are odd, 50 the matrix elements are only non-zero for a
change in vibrational quantum numbers of Av = 1. Such transitions are called fundamental
transitions because they are the most intense. To obtain overtone transitions for which Av > 1
or combination bards in which the quantum numbers associated with more than one normal mode
of vibration changes, it is necessary to include higher order terms in the normal mode expansion

(29). Coupling between normal modes caused by anharmonic terms is zero unless vi=v” (direction

23
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cosines are even functions). Equation (33) represents the matrix elements for pure rotational
spectra, that is, transitions between rotational states in the same vibrational level. These types
of transitions git e rise to microwave spectra, and are functions of the permanent electric moment
of the molecule.Equation (34) represents the matrix elements for simultaneous changes in both
vibrational and rotational states.

In the analysis of the vibration-rotation spectra, absolute intensities are not necessary,
only the relative intensities are important. Therefore it is not necessary to know the exact form

of {V IM glv") . only that it is non-zero. Hence we are left with the quantity

2
ZI(R'I(DFg ;R")! . the line strength, which along with weight factors to be discussed later,
F.g '

defines the relative transition intensities.

2.3 Symmetric Rotor Selection Rules3

Before we attack the transition intensities, we first address the selection rules by

examining the matrix elements R"D Fg fR") for an asymmetric rotor. The selection rules for a

slightly asymmetric vibrating-rotating molecule can be best understood by first considering the

selection rules for a symmetric rotor. This is because for a sy mmetric rotor, K is a good quantum

number (sce Appendix B) and we can derive exact selection rules for K in the symmetnc limat.
We start by realizing that angular momentum will transform from the lab frame to the

fixed molecule frame exactly as the coordinates transformed under rotation

Pg= ;‘b Fg(0.0.7)  F (35)

Note that everything is dune in the representation for which the energy of the symmetric rotor

is diagonal in J and K. In this representation we have

3The theory of Section 2.3 is taken from Reference [3] [pp. 95-98];




(JKMIP[J'K'M") = K8 ;8 1.8 \us-

and

(]I\\ﬁPZU KM =J(J + 18,88\

Consider

[P [p%.0] ]=P*0 - 2P%0P? + ¢P*

Repeated application of the commutation rules [P oL i] = ei;!-:Pk gives

Pid — 2P20p? + oP* = 2h( P20 + ®P2) - 4h2P(P - D)

This means that
K MIP D — 2020 + oP KM = 202 K'M P20 + 0P ZJKM)

— 4R3I K'M'P(P - ®)JKM’

which implies

K20 07 -2 s 010 £ D+ 170+ 0 kKM o7KM)

=2h*[J (' 1) +J(J + DK M OJKM) - 4h3 ("K' M"P(P - &) JKM)

For J'# J the last term on the RH.S. of Equation (41) vanishes. For the other factor on the

R.H.S. of Equation (41) we write

AU+ D +JT+ D) =+ ]+ = =) -1

The term on the L.H.S. is factored to give

(36)

(37)

(38)

(39)

(ClD)

(41)

(42)
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20+ D> -2+ 030+ 0 2130+ D =fg-Dg+1+1] @@

resulting in

[0-nArsT+ 02 = ge ] £ 2= (- ) ~ I K' M OJKM) =0 (49

or

[+ 7+ v% = 1llg= )’ - 1yx Mlexay=o 45

For a non-vanishing matrix element one of the coetficient expressions must be zero. The first

term cannot be zero because, by assumption, J'= J and]",J 2 0. The second term is zeso only if

J-J=%1.
For ] =T, note that P - @ is a scalar operator and is therefore invariant under

2
operations generated by P, and P7. Therefore we have

[P..(p- )] =P’ (P - ®)]=0 “6)

leading to the following matrix representations

0=KM[PL(P- D)JKM) = I KM FAP - @)= (P- D)P_JKM)

= (K- KJ'K'M'[P - ®]JKM) 4N
and
0= (K M [PL(P - O)JKM) = (KA PP - &) - (P - ®)PEJKM)

=[J'(J+ D-]+ DJFKMP- ®JKM: 45)




e/

Equation (47) and Equation (48) lead to nonvanishing matrix elements only for K'= K and

J'=]. Finally we construct  operator (DFY * i®p , which together withP, and the

commutation relations used above, show us that

N (49)

TRMOp 2P JKM) =88, 81\

which implies the selection rule AM == 1. Collecting the important results we have for

the selection rules for the symmetric rotor in the general case (v !M 8|V ") are

Aj=0+1 AK=0%1 (50)

2.4 Asymmetric Rotor Symmetry Considerations and Selection

Rules*

The spectrum of the asymmetric rotor will be complicated because the seleciion rules are
more complex than in the symmetric case. This is because of the increased number of energy
levels and the arbitrary direction of tie changing dipole moments. Despite these problems,
general statements can be made concerning selection rules for asymmetric rotors.

First, since total angular momentum is always conserved, even though the molecule is
now asymmetric, the transformation matrices for the asymmetric case are diagonal with respect
to ] (as they are in the symmetric case). The seiection rules for | are therefore the same; that is,

A] = 0,£ 1. The sclection rules for K_1 and K1 can be obtained by examining the symmetry

of the molecule in question.

The rotational behavior of a molecule of C 2y Symmetry depends on the ellipsoid of
inertia, which is symmetric with respect to a rotation of 180° about the principal axis even

though the molecule itself, being asymmetric, may not be symmetric with respect to such a

4The theory of Section 2.4 is taken from the following References: [2] [p. 93}; (3} [pp. 106-107); (8]
(pp. 214-216].
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rotation. The rotational wave function ¥ JK _K_ is either symmetric or antisymmetric with
-1 1

respect to such a rotation.

For an asymmetric rotor in the limiting prolate case, symmetry of the wave function

with respect to a 180° rotation about the a axis (axis of least moment of inertia) which is the

+iK
K _x

axis of symmetry, depends on the angle X asin € . Therefore ¥ K —1K1 is symmetric

when K _; is even and antisymmetric when K_; is odd. Similarly, in the limiting oblate case,
Yk 4 I<1 is symmetric with respect to rotation about the axis of greatest moment of inertia

(c axis) when K1 is even, and antisymmetric when K] is odd. Since successive rotations of
180° about all three axes bring the molecule back to its original position, the symmetry for a
rotation about the b axis is the product of the a and ¢ axis symmetries.

Now if the changing dipole moment lics along the a axis, the matrix element, on which

the relative transition intensities depend, i3 of the form

{R'I(DFaiR"> = J'WJ'K'_I K 1(I) FaWJ"K" , K" +1d'lt = J’\yJ,K,_IK.IuCOS (Fa)wJ"K"_lK"1dT

(51)

where J'K'_ K", ‘and J"K"_; K", represent the quantum numbers of the initial and final
rotational states, L is the dipole moment and cos(Fa ) is the cosine of the angle between a and
some space-fixed axis. Since cos(Fa) changes sign for a 180° rotation about the c axis for
example; then WJ'K' _1K'1W J’K" 4 K"] must also change sign for the matrix element to be non-
zero. Otherwise (R 'ld) Fa {R ") itself would appear to change sign, and since the ellipsoid

moment of inertia is symmetric with respect to this rotation, this would imply the matrix

element would have to be equal to zero to avoid a contradiction. Therefore transitions of this

type can occur only when K'; and K", are of different parity. A similar argument for rotation

about the b axis shows that K'_ and K"_; must be of the same parity. This type of procedure

is repeated for changing moments along the b and ¢ axes to establish selection rules for all cases.

28




Symmetry properties for asymmetric wave functions are summarized in Table 6 and selection

rules in Table 7.

Table 6

Symmetry Properties of Asymmetric Rotor Wave Functions. From [2] [p. 94].

Designation Behavior with 180° rotation about principle axes
K, K, a b c
(least moment) (intermediate | (greatest moment)
moment)
e e + + +
e o + - -
o o - + -
o e - - +

Table 7

Sclection Rules For Asvmmetric Tops. From 2] [p. 94].

Axis Parallel to
Changing

Dipole Moment

Allowed Transitions

a (least) ee < €eo

00 & oe

b (intermediate) ee & 00
eo & oe

c (greatest) ee & oe
00 & €0
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Briefly, we see that the selection rules for symmetric rotors, AK = 0,% 1have been
relaxed. In general wenowhave AK =0, 2,+4,...or AK=0,£ 1,2 3,... that is, AK_1
and AK , arerestricted to even or odd changes. However, not all numerical combinations of

AK _; and AK] are possible since K—l + K, =] for even levels (even levels defined as

K_;+K,+]=even)and K_; + K, =] +1 for odd levels (odd levels defined as

K_ +K;+]J=odd.

2.5 Relative Intensities of Asymmetric Rotor Transitions From the

Direction Cosine Line Strengths®

2
The line strengths EKR "q)pglR")i mentioned earlier were, strictly speaking,
Fg'

direction cosine matrices of basis functions for a symmetnic rotor described by the Euler angles. To
describe the line strengths for an asymmetric rotor we just represent the asymmetric rotor wave
functions as a sum of symmetric rotor basis functions which transform under rotation to the
degenerate pairs to which they converge to in the limiting symmetric cases. Hence, direction

cosine matrizos for the asymmetric rotor can be calculated from linear combinations of values of

(4]

Fe which give the same symmetry.

We will detire transition intensities as the direction cosine line strengths as modified
by the fraction of mole. - available in the ground state of the particular transition. In the

rigid rotor-harmonic oscillator zpproximation this fraction is given by

f=fji< ]K]fv (52)

SThe theory of Section 2.5 is taken ¢ .q the following References; [2] [pp.100-101); [3] [pp- 105,
110-111}; [8] [pp. 210-214).
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This approximation also assumes no coupling between vibration and rotation, which is
particularly true for low vibrational quantum numbers. Note we have also assumed all the

electrons to be in their lowest state. The fraction of molecules in a particular vibrational state of

energy hv(n + —;-), n=20,1,2,...1is

k T (53)
B -nhv -hv
f. = = exp[ :Kl — exp )
\Y - —hv(n+12) kBT kBT
Y exp
k T
n=0 B

For a multi-band harmonic oscillator it is

d

[ I -hvm) m =
l |exp 1-exp
B

where d p, is the degeneracy of the vibrational mode of frequency Vp, . Since thereisa 2] +1

degeneracy from the M-quantum numbers, we have for the fraction of molecules in a particular
rotational state (the asymmetry of the molecule splits the K-degeneracies of the symmetric

rotor)

~E
(2J+1) exp[—%’,ﬂ}
£ _ B , (55)

JK K
-1 Z(ZJH)exp[ (abc)}
kBT

where E(abc) is the energy given in Equation (25).

Inour case, the Vg transition is non-degenerate and the ground state has the

vibrational quantum number n = 0. So in principle, we can write the intensity of a spectral

transition for a single band in the rigid rotor-harmonic oscillator approximation as
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"EV'R'(abc)
(56)

kT
VR, V'R* [-E }

I (v R M F|V"R">|2

where V'R' and V"R" stand for all the vibration.l-rotational quantum numbers of the lower and
upper states respectively. 8y'r' is the multiplicity of the lower state, which, since we assume
all the electrons to be in the ground state, includes only the nuclear spin statistics. E n(abe) is
the asymmetric rigid rotor energy fror Equation (25), N is the number of molecules per cubic
centimeter and V is the transition frequency.

To compute relative transition intensities, we note that the denominator and the

constants in Equation (56) are the same for any given molecule. Also, since the frequency from one

end of a vibrational-rotational transition band to the other does not vary appreciably,

~hv
1-exp —— . . . . . .
( XP kB ) is essentially essentially constant for a given band. And, as pointed out earlier,

the purely vibrational part of {V' R'jMF V"R") is not important for calculating relative

intensities as long as it is not zero. Therefore the relative intensities in a vibrational-rotational

band can be computed to a high degree of accuracy with knowledge of E the line

n(abce)”’

strengths and the nuclear spin statistics.
We finish the discussion of relative transition intensities by addressing the issue of the

nuclear spin statistics.

2.6 Nuclear Spin Statistics of SF2026

Anytime a molecule has two identical nuclei (same isotope of the same element) which

share the same electronic environment within the molecule, the nuclear spins will affect the

6The theory of Section 2.6 is taken from Reference (2] [pp. 102-103].

(98}
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symmetry of the overall molecular wave function. The overall wave function can be

approximated as the product

Vir=Ve¥ yWRrY: (57)
where Ye, ¥y, W and ¥ represent the parts of the wave function dependent respectively
on electronic, vibrational, rotational, and spin coordinates. Naturally the behavior of WT
with respect to any symmetry operation depends on the behavior of each of the four parts. The

electronic wave function. for most polyatomic molecules are in the ground state (and therefore

symmetric) at room temparature, and the ground vibrational state for SF202 is also symmetric in

the harmonic oscillator approximation, so the symmetry of the totai wave function for this

transition in the SF202 spect-z is determined only by the product of the rotational and nuclear

spin functions. We can then write, for symmetry purposes,

Y=V _k, Vi (58)

If, in a molecule, two equivalent nuclei occur, the molecule will have a twofold axis ot
symmetry, and consideration of the nuclear spin statistics with respect to an interchange of
identical nuclei coordinates about this axis must be considered. In SF20) we have two pairs of
identical nuclei, but since the oxygen nuclei have zero spin, they will not contribute to the spin
statistics. Only the two fluorine nuclei, each of which has a spin of 1/2, will affect the nuclear
spin states.

The nuclear spin function can be cither symmetric or antisymmetric, and is formed by

taking lincar combinations of the spin functions of cach individual nucleus, that is
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V= Gm(l)om'(z) , MU= (symmetric)

V,=0n(Do_(2+0_(Don,(2) (59)

(symmetric)

Wl =G m(l)(ym_(Z) - Gm.(l)c m(2) (antisymmetric)

where G m(l) and G m(Z) are, respectively, the spin states of the first and second identical

nuclei with projection m of spin I on a space-fixed axis. As usual, m takes on the 2I + 1 values

I,1-1,I-2,...,— 1. Hence there are 2I + 1 combinations possible for the first equation of

-

2
(59) and 'fgﬂ—)—z'mi’—) ] possible combinations each for the last two equations of (59). This

gives us a total possible number of symmetric spin functions of

Ngym = Q@+ DI +1) (60)

and a total possible number of antisymmetric spin functions of

=21+ 1)1 61

antisym
A molecular rotation of 180° about the symmetry axis (a axis) in SF202 amounts to a

complete exchange of molecular coordinates of the two fluorine nuclei. Since only the fluonne

nuclei (which are fermions) contribute to the spin statistics, ¥ 1 must obey Fermi-Dirac

statistics for the exchange. Hence we must always pair an antisymmetric nuclear spin function

with a symmetric rotational function to keep the nature of ¥ 1 antisymmetric. Similarly, a

symmetric nuclear spin function will always be paired with an antisymmetric rotational wave

function for rotation with respect to the symmetry axis.
1
Sincel= 3 for the fluorine nucleus , Equations (60) and (61) tell us we have a total of

three symmetric and one antisymmetric nuclear spin functions. So, according to Equation (56),

rotational wave functions for SF202 marked with a *-" under the least moment column n Table 6
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will have (all other factors aside) three times the intensity of those marked with a "+". These

results are tabulated in Table 8.

Table 8
Nuclear Spin Statistics for SF202

v
K%

Y,
K

—

Symmetry with respect Statistical Weight

to 180° rotation about

symmetric

symmetric

|
axis of symmetry {(a axis) |
|
i
!

antisymmetric

Clojo{m

mOO(’O

W et |

antisymmetric '




Chapter 3
Experimental Procedure

In this experiment, a tunable diode laser was used to generate laser light in the 11t
range to observe the SF2O3 spectral profile. The laser light was transmitted through a 150 cm

absorption cell and the resulting signal was chopped at 500 Hz before entering the detector. “ihe

spectral trace was recorded on a personal computer (PC).

3.1 Experimental Description

The layout of the experiment is depicted in Figure 4.
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Figure 4---Experimental Layout

The source is a small (400 p x200 1) crystal chip of the Pb-salt family with a typical line width

of a few megahertz [16] [p. 9451, [15] [p.2695]. The chip is mounted in a refrigerated dewar (cold
head) and is part of an overall laser system. This system is a Laser Thotonics model LS-3 laser
spectrometer. In addition to the laser source, the spectrometer includes. a HgCdTe type, liquid
nitrogen cooled detector with low-noise amplifier, a cryogenic temperature stabilizer (CTS ); a

laser control module ( LCM ); a grating monochromator; and various optics (see Figure 5).

LS}
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Figure 5—Tunable Diode Laser Spectrometer. From [16] [p.9-3}.

The laser is cooled by a CTI-Cryogenics model 22C aryodyne refrigeration system. It

operates on a high purity, closed He gas expansion cycle, and can cool the iaser down to a

temperature of 14°K . The CTS provides temperature stabilization of the laser cold head to the
order of less than a millikelvin. At cryogenic temperatures it also provides a convenient ard
accurate temperature indicator for the range of operation of this expennment. Although tne cold
head is a closed system, interior outgassing nccessitated periodic evacuation. The vacuum was

maintained by a liquid nitrogen cold trapped Varicn diffusion pump operating in tande .. witha

standard roughing pump.

The LCM provides cur-ent control of either positive or negative polarity to the laser.
The current can be adjusted from zero to a limit of 2 Amps at a continuously adj istable rate from
102 t0 10> Amps/sex.

The grating monochromator provides two functions. It gives absolute frequency
calibration to within 05 cm -1, and, by varying the slit width, it can act as a variable frequency

bandpass filter (~05 cm *1 wide ). The latter function is necessary because the laser emite

ol
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multiple modes, and high resolution spectroscopy is performed with on’y one mode at a ime [16]
[p.948].

This method of using the monochromator and the CTS for coarse tuning and the LCM for
fine tunirg allow: : limited tuning range of about 1 tv2am™! . The tuning behavior results from the
dependence of mod frequencies on both the energy bandgap and wne refractive index of the crystal
[16] [p.947].

The SF20; sample is stored at low pressure in a 150 cm stainless steel cylinder with AR
coated ZnSe windows. The purity of the sample is not knowvn.

Scans were recorded on a computer with the help of the software package that ¢ 2 with

the Stanford Research Systems model SR510 Lock-in amplifier.

3.2 Conduct of the Experiment

From earlier experiments we knew the P and R-branches oi the V g vibrational band
would be in the 835 cm 1 region [111, 112}, 50 we ordered Laser arystals swhich were designed to be
tunable in this region. Once the laser crystals were mounted in the cold head, il modes of the
laser output in this particular frequency range were identified by tuning the monochromator to the
approximate wave number and using the CTS to zdjust the temperature of the laser.

The lzser output was observed en the oscilloscope while the LOM was used to ramp the
current over the entire current range. Cnly thase axcillating laser modes whose tr2nsmiscion
profiles were free of mede-heps or othar irregulentivs were selected . We then repeated this
process at different temperatures antil se had 2 coliect:on of 2cceptable modes for 2 particular
frequency setting of the monochromatas. For another frequency, the monochromator was reset 2nd
the process repeated.

The procedure for actually recording spectra involved three steps. At a fixed
monochromator seting and 2 fixed ol head temperature, the laser current current was slowly

swept. First, we placed the c2li containing the SF202 sample in the beam path. The cell was

- z
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then removed from the beam path and the current sweep was repeated in the exact same manner.
This transmission scan provided a record of the pure laser power output profile. An air-spaced Ge
fabry-perot etalon (with a free spectral range of .05 cm -1) was placed in the beam path for the
final scan. The etalon would hopefully provide a means to establish a relative frequency scale for
each family of scans [16] [pp. 948-949], [13].

The scans were recorded in a personal computer i a volts versus time Cartesian format.
This computer was hooked directly to the lock-in amplifier. The available software gave us an
option of selecting a sample rate varying from 20 to 2 Hz. A standard sampling rate of 2 Hz was
selected to balance the need for a high signal to noise ratio against the need for a reasonable
scanning time.

Initially the SF207 sample was placed in a cell 30 cm long at 300 mTorr. This cell was
small and easily handled, but did not provide for enough absorption to measure low ] rotational
transitions. The SFpO7 sample was then moved to a cell 150 cm long and kept at 900 mTorr. The
pressure was gradually reduced to 150 mTorr to prevent saturation of the transition, and to ensure
we were well within the doppler-broadenced regime. This combination of cell length and sample
pressure allowed the measurement of evven the lowest | transitions, as long as the lines were not
obscured by other transitions.

There are basically two methods for recording spectra with a tunable diode laser [15] [p.
26971, [13). One method is by rapidly ramping the current over the entire current range and
recording the output on a multichannel integrator. Since a multichannel integrator was not
available, we relied on the more conventional lock-in method. In this method the diode current is
slowly swept as the output is traced on the recorder (which in this case is the computer screen)
utilizing a step and integration collection method [13]. After some trials, we decided that a
current scanning rate of 104 amps/sec was ideal for the type of scans we wanted and the amount of
detail needed. Faster scanning rates tended to smear away details while slower rates allowed
excessive thermal and vibrational noise to obscure the spectra. The characteristics of the laser

also had an impact on the data collection. A crystal with a frequency scanning rate over about 480

40




e

MHz/milliamp would force us to slow the current scanning rate below the level at which

unacceptable amounts of noise would creep in.

3.3 Data Analysis

After a set of scans for a particular monochromator setting was recorded, a normalized
spectrum was then created by dividing the absorption scan by the transmission scan. It was
evident that the scans produced a distinct set of lines that appeared to be somewhat regularly
spaced, but before those lines could be unambiguously assigned to various SF20> transitions, it was
necessary to examine the available information on the molecule more closely.

Previous work in both the microwave and infrared regions has given reliable information
about the structure and inertial parameters of SF207. SF20; possesses Coy symmetry with a pair
of oxygen atoms and a pair of fluorine atoms attached to the central sulfur atom tetrahedrally (see
Figure 6) [14] [p. 4]. From previous microwave work, the three inertial constants of SFoO7 were
found tobe A =.1713 cm'l, B =.1693 cm'l, and C =.1686cm’1 [14]. The shape of the molecule
suggests (and microwave measurcments confirm) the assignment of the least axis of inertia (a axis)
to the symmetry axis (z axis) of the molecule. However since C and B are nearly equal, the
assignment of the b and ¢ axes is not immediately obvious. Since the difference between the
greatest and least inertial constants is small compared to the value of the constants themselves,
SF203 is classified as a slightly aspherical asymmetric top, an uncommon type of molecule.
Consequently, the asymmetric splitting will be small, and the spectrum, while still
representative of an asymmetric rotor, will be simplified [14] [p. 1].

The nine normal vibrations for SF203 are given in Figure 7 along with their symmetries.
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Figure 7--The Normal Vibrational Modes Of SF203, From [11] [p.1792].

Figure 6 (previous page)--Structure of SFp0O2. From [14].

The vibration we are studying has been described as the SF2 asymmetric stretch (V g band). The

schematic of the transition is given in Figure 8.
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Figure 8--Schematic of the V g Transition for the Slightly Aspherical Rotor SF202

The spectrum is divided into P, Q, and R -branches based on the primary selection rules for
asymmetric rotors AJ=-1,0, +1 respectively . Because SF202 is very nearly a spherical top, we

should expect to see a distinct and well-defined PQR structure [11] [p. 1791].

44




N P P >

Classically, a vibrational transition is connected with a change in the dipole moment of
the molecule. For a transition to be IR active, it must have non-zero matrix elements. For any
molecule of the form X2YZ) having Cpy symmetry, the only transition that is IR inactive is the
tortion oscillation of X2 against Y2 [26] [p. 240]. For SF202 this corresponds to the v 5 mode (see
Figure 7).

The vibrational transitions of molecules are classified into A, B, or C type bands
depending on whether the change in the dipole moment lies along the a, b, or c axes. SF207 does
have a permanent dipole moment of .228 +.004 Debye which lies along the symmetry axis (a
axis) and points in the direction of the two fluorine atoms [14] [p. 5. Since the v 3 asymmetrical

stretch of SF207 lies entirely in one plane, the only type of transitions we will observe will be

transitions represented by changes in the dipole moment along the a axis and /or the perpendicular

axis lying in the plane of the Vg vibration. But further examination of the molecular structure of

SF202 suggests that, for the v asymmetrical stretch, the strongest dipole moment change would

8
lie in the axis perpendicular to the a axis in the planc of the vibration. Since earlier microwave
work was unable to resolve the b axis from the ¢ axis, it was not immediately clear if we would
observe B-type or C-type bands in the spectra. In any case, we can eliminate A-type bands because
the structure of the spectra would be completely different from what we >bserve. Fortunately, it is
relatively easy to distinguish between B and C type bands by examining their Q-branch structure.
The Q-branch structure of a B-type band does not possess a strong central branch. Rather, the Q-
branch has a central minimum and its lines tend to overlap the P and R-branches. In contrast, a C-
type band of an asymmetric rotor in the prolate symmetric limit strongly resembles the
perpendicular band of the symmetric rotor. This band is characterized by a strong central Q-
branch of unresolved lines that are generally stronger than the P and R-branch lines [27] [p.88].
This stark difference in Q-branch structure between B and C type bands should help to determune if
the observed spectral transitions are B or C type.

Finally, we can use Equation (25) to estimate the relative spacings of the transitions, at

least for low values of J. If we neglect centrifugal distortion, set the inertial constants for the
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excited state approximately equal to their value in the ground state, and note that A = C, we see
that each transition is separated by an interval E = (A + C) = 10.2 GHz.

So, based on the physical propertics of SF2O2, we are looking for a well-defined PQR
structure, and a Q-branch reflecting the characteristic shape of a (B or C) type transition. The
transitions should be approximately 10.2 GHz apart from one another and each transition should

have a fairly regular structure due to the slightly aspherical nature of the molecule.

3.4 Determination of Relative and Absolute Frequency

To measure the spacing of the transitions, we initially used an air spaced Ge etalon with
a free spectral range of .05 cm™1. It was hoped this etalon would give a large number of closely
spaced peaks within the range of the scan, thereby allowing a frequency scale to be
established[13]. Assuming each peak was separated by .05 cm™1, a linear scanning rate for each
peak interval was established by dividing .05 cn.! by the measured time interval between each
etalon peak. The spacing of each transition was then determined by counting the number of etalon
peaks between the transitions, then multiplying the determined scanning rate by the remaining
fractional intervals. We were able to find that the intcrval between the major prominent features
of each scan to be around 10 GHz, leading us to conclude that we were in fact observing transitions
of the v 8 band of SFp03. However, we also measured intervals of other scans with the etalon
that ranged from 8 to 12 GHz. Apparently the free spectral range of the etalon was too large to
effectively linearize the diode scan. Other ctalons with smaller free spectral ranges were tried,
but were found to be too sensitive to vibrations to give consistent results.

This problem was corrected at the same time a way was found to determine absolute
frequency. Since the monochromator could not give a precise location in frequency space, SiHg,
which has a structure that is very precisely known, was used as a reference [28]. In the
experimental procedure, the etaion scan was replaced with a simultancous scan of both the SF702

sample cell and the SiHg sample cell. The SF20 transitions w ere now superimposed on SiHy
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lines which had well known locations. Relative and absolute frequency could now be determined

by measuring the time interval between the nearest two SiHg lines which straddled each SF202

transition. This technique did not completely account for all the error of a non-linear diode tuning

rate, but results were much more self-consistent, and more consistent with the theoretical

approximations. (see Table 14).

3.5 Interpreting the Spectra

An examination of the Q-branch scans showed quite clearly that we were dealing with C-
type transitions. The Q-branch strongly resembles the parallel type band of a symmetric prolate
rotor. This knowledge, along with the nuclear spin statistics, allowed us to immediately identify

each transition with an even or odd rotational quantum number. This is because the lines of each

T R R T Y i T T N R E A A R

transition of the P and R-branches (the Q-branch lines are not resolved) at some point show a

regular alteration in intensity in complete agreement with the nuclear spin statistics of the two

fluorine atoms. For a C-type band, even ] transitions start with a weak line (on the high energy

side), odd ] transitions with a strong line. For the R-branch these parity assignments were
confirmed when actual J-values were assigned to each transition: by using the SiHg lines and
counting the number of 10.2 GHz intervals from the edge of the Q-branch. This was not so easy on

the P-Branch side because there was no definite edge to the Q-branch there, and it was clear that

an unknown number of P-branch transitions were obscured by the Q-branch lines.
To be absolutely sure of the quantum number assignments on the R-branch side, and to

determine how many P-branch transitions w cre actually hidden by Q-branch lines it was

necessary to actually identify in the scans as many low ] transitions as possible. This was not easy,
because the low ] transitions on both the I” and R-branch sides were weak and it was hard to tell
them apart from the noise in the scan. One way to strengthen the low ] transitions was to change
the Boltzman distribution of the sample. We did this by cooling the cell to dry ice temperature.

Under the approximations given in Equation (57) and Equation (52), the rotational wave functions,
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and hence the rotational energies, are independent from the other energies of the molecule.
Therefore we can approximate the fraction of molecules in the sample at a particular rotational

energy level ] by Equation (55). If we approximate A = C, then we have from Equation (55)

(2)J+1)exp :-(—A%E-)—J,I(_—Jlll
B . .
f =f = , for A and C in units of energy
J J —(A+Q) J(J+1) (62)
K-lKl %(2]+1)exp ————ZkBT

1 .
For this molecule in the ground state kBT > E(A +C), even at dry ice temperatures. Thus

2_:’ J , and the denominator of Equation (62) bacomes

- ~(a+Q(+1) _ 2KgT
.L(ZI +1)exp 2T (A+C) (63)

To determine the preferred J value at any particular temperature we set

df f
()
=0 64)

which leads to

1 1
J max = (A+C) ( kBT) ~ 7 for A and Cin units of energy (65)

For room temperature J . = 25. For dry ice temperatures (- 80°C)’] max = 20.
By cooling the cell with dry ice we were able to identify all R-branch transitions, and all P-
branch transitions down to J=4. (the ] valuc of this transition was later confirmed by direct
association with computer generated spectra.)

Although we determined the SF202 spectra to be primarily C-type transitions, there was

still some structure in the absorption scans that could not be accounted for. Since there were no Bor

A transitions for the v 3 band, this additional structure could only be coming from another

vibrational transition (hot band), or from an 1sotopic band. The only isotope that exists in any
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appreciable quantity for any SF)O2 component is 34S. Approximately 1/20 of all sulfur is 345,
Therefore, if the observed structure was due to 345, we would expect to see a C-type spectrum that
was 1/20 as intense as our primary spectra with the following modifications: Under the harmonic
oscillator approximation, the vibrational band center would be shifted by an amount proportional

to the ratios of the reduced masses; that is:

L SRS -
o mg+2m +2m  32+38+32 102 66)
T misom F2mg T 34438432 104 (67)
u -
325F,0) band center : _\/:; (872.21) = 869.12cm ™ )

Furthermore the transition spacings will be shifted an amount approximated to first order by

(_A_ZE)(;“!_) = 9.79Ghz (69)

However, this type of structure was not observed. What we do see is too strong and does not follow
the above pz‘terns. Therefore we conclude that the unidentified structure is probably not due to
the isotope 34S.

To check the possibility that the structure may be due to a hot band, we can check Table 9

for the correct vibrational difference combinations.
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Observed Frequencies and Band A’Z:;;nglents for SF207, From {12} [p. 572]
A Assignments
(cm-1)
274 v,
360 Ve
386 Vo
| 539 v,
; 544 2v,
§ 553 v, §
g 668 V¥V i
720 o 2v, ‘
769 2v |
848 v, !
887.2 Vg |
925 2v 2TV
954 Ve~ VY, |
1077 2v7 !
1092 VotV :
1103 2v, i
1118 V,*tVv,
1269 v, E
1389 B VotV ,
1502 ) Ve :
1698 - 2v, j
1727 vV, TtV !
1772 2v 5
1820 VTV,
1889 o ? ;
2052 v,tV ;
2115 V,tV i
2355 vV o+ Vv ;
2536 v, :
2760 v,+tv,
2995 2v ¢




We look for difference combinations of various excited bands that come close to being separated by

887cm’l, and have an appreciable occupation at room temperature. The only likely candidates are

listed in Table 10.

§ 3

l Table 10
Possible Hot Bands
i Band + 887 cm-1 = Band + Left-over | Rotational J-
- ROtational Valuesl to
i Energy which left-
l over
- Rotational
Energy

. Corresponds |
l (274cm™1) " (1077em™) ' !
’ V5=1 ! Vl=1 " _22¢m-t ! 66

(360cm™1) V' (1269cm=1) l ‘
E V9=1 V1=1 i 4cm—l i 12
_ (386cm™) | (1269cm™1) :
l 1Based on a spacing of approx. .34 eml per transition

Based on the information in Table 10 we can climinate all but the v 9 band. The other modes

involve intcractions with J-values that are so high as to preclude any appreciable occupation at

S

room temperature(for example, the J=66 rotational level has an occupation of only .028%).

Therefore, if the unidentified structure is hot band activity, it is probably due to the transition

V= 1—-v =1
Next we use the fact that the Boltzman occupancy of the v 9 band will change
differently with temperature than the occupancy of the V¢ band. Using Equation (52), Equation

(54), Equation (62) and Equation (63) we can construct the following table
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Table 11

Comparison of Fractiona! Qccupancies (fyfj) of Typical Low-J Transitions of the Vg Band with

Hot Band v 9= 1 Transitions of Similar Er 2rgies

Basic Data Comparison Of Fractional
) Occupancies
. Vibrational Fractional Fractional ractionai Fractional
State Occupancy at Occupancy at Cccupancy at Occuparcy at
Room ~ Dry Ice Temp. Room Dry Ice Temp.
; Temp. (T = 193°K) | Temp. (T =193°K)
i (T =294°K) (T =294°K)
St =43 4% = 74.9% f £ = =
Ground State f\! 43.4% f\f 74.9% ground 1 J=3 around {J=3
skate state
-25% .65%
= = f =42% f = f =
Vg 1 f\’ 6.6% f.=32% ‘=e=§§f=i5 ve=l‘j=b
.14% 2%
Rotationai £ f _=1f £ =
State ground  J=7 ground =7
state state
-52% 133%
_ £ - 57¢ {f — &7 ¢, £ £ = =
J=3 °J .o/ Y 4 .CF vc=!;}=i9 v =lfj=|9
.16% .13%
J=7 f,"i.19€é f,= 1.77%
J=15 f’=?..11‘;'c f}=2.90‘7=
J=19 f} =237% :’i= 3.06%

If swwe now go to our scans we see that in cach case as we go from rocm emperature to dry ice

temperature, the strength of the v 5 barnd transition increases while that of the kot band

decreases, just as predicted in Table 11, if we take the ratio of the strongest v

5 band linc to the

strongest kot band line in the same scan. and compare this rat.o at ioth lemperatures, we shouid

see that the ratio will always intrease as we go from room temperature doswn to dry ice

temperature (see Figure 9).

Ly
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Figure 9-~Comparison of Lines From the v 8 Band to Lines irom the Hot Band Transition At Room

Figure 9 shows that the experimental scans do in fact display the predicted pattern.
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Therefore we conclude that the unidentified structure in the scans which cannot be attnbuted to
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the C-type transitions of the v 8 band are most probat!y hot band transitions originating from

the v9_ vibrational band.
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Chapter 4

ERROR ANALYSIS

The largest source of experimental error was the diode itself. Over the course of the
scans, taken in the lock-in mode, small deviations in frequency output linearity were observed
which did not reproduce from scan to scan [15] [p.2699]. These instabilities in the laser affected our
ability to pinpoint transition frequencics, that is, repeated scans of the same transition produced
different locations in frequency space for the same lines. The precision with which we could
measure the frequency of a particular transition varied from transition to transition depending on
the behavior of the laser and the relation of the transition line in question to the superimposed
SiH4 sample lines. These errors were accounted for by scanning each transition several times and
using the sample standard deviation as a measure of the uncertainty or precision of the frequency
of each line entered into the least-squares fit program. The program then assigned a relativ2
weight factor, by standard least-squares theory, to cach line based on the entered uncertainty.

The instabilities in the laser output frequency arise from the sensitivity of the laser to
temperature, current and mechanical fluctuations. In each case, we were able to develop
techniques for minimizing the errors produced from cach source.

Of all the sources of instability, the diode is most sensitive to temperature fluctuation
[15] [p. 2695). Temperature fluctuations over the course of a scan are either instantaneous or long
term. Long term temperature fluctuations (temperature drift) were detected by comparing the CTS
panel readings from the beginning and the end of the scans. However, unless the CTS was
monitored constantly during the scan, only cumulative temperature drift could be detected. For the
CTS model used, which employed a silicon diode temperature sensor, typical temperature drifts

are given in Table 12.
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Table 12
Temperature Drift

Temperature Drift Si Diode Behavior
T>25°K °K mV_
> +.003 —= 2.7
T<25°K 2K mV
< $.001—~ 50 3%

Table 12 also shows that the temperature is susceptible to voltage fluctuations, particularly at
lower temperatures. Error due to temperature changes was minimized by rejecting all scans for
which large temperature drifts were observed. The diode temperature was also allowed a period
of time to stabilize to the new current setting before a scan was initiated.

Although we could eliminate a large number of scans by reading temperature drift from
the CTS, not all errors from the temperature fluctuation could be eliminated this way.
Instantaneous temperature variations, tempcerature hysteresis , and temperature drift which
affected the laser but could not be measured on the CTS still influenced the scans. Temperature
hysteresis results in an overall (non-reproducable) frequency shift between scans (151 [p. 2699].
This error manifests itself when the scans are normalized. Since absorption and transmission scans
were not taken simultaneously, dividing them together, when one is shifted with respect to the
other, may have introduced a shift in the linc positions. If the right equipment is available, the
shift between absorption and transmission scans can be eliminated. 6ne way is to split the beam
before it enters the sample cell. Part of the beam then travels through the sample, while the
other part does not. The beams remain spatially separated through the monochromator and enter
separate detectors. Since the scans are recorded simultancously, there will be no shift.

But even if absolute shift between divided scans is eliminated, there still exists
instantan2ous temperature fluctuations and some temperature drift. Both drift (which has
already been discussed) and fluctuations are functions of the CTS. The ability of the CTS to
stabilize the temperature (and hence climinate fluctuations) is affected in part by the sensor

responsitivity. The increase in heat capacity of the sensor with temperature will slow the speed
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of the cryogenic heat sink and increase the time required to stabilize the temperature as the
current changes during the scan. We compensaied for this as much as we could by optimizing the
gain and reset controls on the CTS for each scan temperature. Another way to eliminate the effect
of a temperature fluctuation would be to use the sweep integration method of recording data. Since
scan times for this method of data collection are extremely fast (10 seconds or less), the laser mount
temperature, once it has reached equilibrium with respect to the average current, generally
remains stable over periods lasting much longer thar the typical scan time [15] [p. 2697].
Fluctuations in current, or non-linear current sweeps, are also classified as instantaneous
and long-term. Instantancous fluctuations result from changes in ambient temperature and the

ability of the LCM to control transient currents. For this system, typical values are given in

Table 13.
Table 13
Current Stability
Current Readout Accuracy | .ImAmp
Drift mAmp '
7 =.02—; 2y

Temperature Stability mAmp
=02——

Line Voltage Stability

¢ = .01 mAmp change for line voltage
: change up to 20%

From the tabie we see that the current is much more stable than the temperature. But at a typical
diode tuning rate of 480 MHz/mAmp, even current fluctuations can lead to errors.

The major source of mechanical fluctuations was the refrigerator piston in the cold head.
Although various methods of insulating the cold head were tried , this vibration could not be
eliminated completely. This is one of the reasons the ctalon was abandoned as a means of
measuring relative frequency in the spectra. The jiggle in the beam as it traveled through the

ctalon caused the peak spacings to vary considerably within the same scan, making them almost

57




Y I L - . . N
b ] i . . .

useless as measuring tools. The smaller the free spectral range of the etalon, the worse the effect.
Besides going to the SiHg as a means of estimating relative frequency, the effect of the vibration
was minimized by using irises to clip the perimeter of the beam, thereby eliminating the most
unstable part of the beam profile.

The net effect of these error sources was to cause the current-temperature combination at
each frequency to be different from scan to scan, resulting in deviations from frequency linearity
down to the MHz level [16] [p.951]). Because we derived relative frequency in the spectra by
estimating a linear scan rate between neighboring SiH4 lines, transition lines which were closer to
the SiHy lines were inherently more accurate than lines which were farther away. Lines that
were far away were subject to a cumulative crror as the linear estimate deviated farther and
farther from the actual non-linear scan rate. This effect was manifested in larger sample
variances for transitions “hat were positioned far away from SiH4 lines.

As stated earlier, because these errors manifest themselves as variations in transition
frequencies which are not reproducible from scan to scan,they can be treated as random errors.
Therefore the sample variance is a measure of the frequency error. Table 14 hists the data from the
usable scans that were actually entered into the lcast-squares fit program. it was assumed that
all lines within the same transiticn shared the same variance. Each line entered into the program
with its accompanying variance was assigned a weight factor by the least-squares routine. Table
14 does not represent all the scans taken. Those scans which were too noisy or otherwise distorted
or smeared beyond value were climinated from consideration . Scans which produced values

which were so far off as to be obviously incorrect were discarded or retaken.
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Table 14
Spectral Data For Least-Squares Fitting Routine
Observed ] Sample Mean! | Sample Standard Transition
Transition Deviation Spacing? (Ghz)
29 - 30 897.2524 =.0001
9.67
28 —»29 896.9300 .0005
9.97
27 - 28 896.5976 .0010
17 - 18 893.2986 .0002
10.21
16 - 17 892.9582 | .0015
i ;
12 -13 891.6268 .0006 i
10.13
11-12 891.2891 .0004
: 10.12
10 - 11 890.9517 =.0001
i 10.08
9 510 890.6156 0003 |
! i 10.09
8 -9 890.2792 0528
§ 10.20




Table 14 (cont)
78 889.9391 0018
10.20
67 889.5990 0016
10.12
5-6 889.2617 0014
10.18
455 888.9225 0005 5
: 10.22
34 888.5818 0006
10.22
23 8882412 | 02 |
i % . 1021
152 879008 0001 !
54 8855030 | 0013 :
3 10.20
65 , 885.1631 | 0004
| 10.23
76 ' 884820 ' 0005 |
13 - 12 8827302 .0001 _'
16 =15 882.6873 0007

TReflects value of first line on high energy side of transition

2 Rigid Rotor approximation predicts a transition interval of = 10.2 Ghz for low-] transitions.
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The basis of accuracy in this experiment comes from the SiHy lines. They are given to an
accuracy of .0001 cm™1 (28]. Our accuracy may have also been affected by the sample rate. Linear
estimates of scan rates varied typically from 20-40 MHz/sec. A sample rate of 2 Hz may have
introduced errors into the absolute frequency measurements. However the net effect of the low
sample rate over our entire scan should cancel itself out, and this ifect can be ignored.

Since we were operating with a sample pressure of 150 mTorr , we were well into the
doppler-broadened regime. The broadening of the lines is given by

FWHM= 2% /& (70)
where FWHM is the full width of the transition line at half-maximum in MHz, X is the
frequency of the laser in microns, T is the sample temperature in °K, and M is the mass of the
sample in atomic mass units. For SF202, we get a width of FWHM = 57 MHz at room temperature.
This amount of width did not prevent us from determining line centers to any significant degree.

The least squares fitting routine relies on the ground state inertial constants as starting

points in the fitting process. For the fitting process, the ground state inertial constants from the
previous microwave experiments were used. We can use the rigid rotor approximation and our
experimental data to calculate the ground state incrtial constants and verify the accuracy of the
constants used’. We start with the general rigid rotor hamiltonian for an asymmetric molecule

in the prolate limit

2, 2 2
Hp = AJ; +BJ, + (¢ (71)
which means
; 72t 2 ie2
Elabe) =[‘HR§ =A\Ja/ +BUJ; ““C‘zjc} (72)

"The theory of this portion of Chapter 4 is taken from the following References: (3] [pp. 43-
44,188-189,204-205}; (29 [p. 7381; [9] [p. 1575].
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where { ) stand for the diagonal elements (average values) of the enclosed operators in the

basis which diagonalizes HR .

Now let HR be perturbed by a small change in C, denoted by 8C , and let the

perturbation be given by the operator

H'=8C]2 (73)

Then if E (abc) is the energy eigenvalue of the unperturbed operator, we can denote the first

order correction due to the perturbation as

E={sc?) )

Let E(a b,c+8c) De the eigenvalue of the hamiltonian

H=AJ; +B]3 + (C +8C)] 2 (75)

and define an £ such that

E(a,b,c+5€) = E(abr.') +E+ e (76)

then

dE
(abe) _
0 = lim

8C =0

Ese
I (77)

Butsince £ = O(8C?) then

-

i {abc}
abc}
,_____,ch;

ac (78)

In this vein, we can, using Equation (25) and Equation (5),dcfine the following quantities




°‘=B—E(aaTbcl=%f(I+1)+%E _(";”ff%
%abe) _ %y
b=—% ==
v= —ﬁ‘-’fl 1g+1-1p,- 00Tk
and we can write Equation (72) as
Elape) =0A + BB +1C

Values for o, 3 and 7y are compiled in Table 15, for various J K K levels.

(79)

(80)




Table 15
Approximate Energy Derivatives of a Rigid Asymmetric Retor (for K~ -0.5). “rom 3] [p. 190]

o g
IK =155 | : P '
330 8.953 1.838 1.209
440 15.950 2.368 1.681
550 24.941 2.936 2.122 ]
551 24.928 2.990 2.082
541 15.784 8.668 5.583
542 15.785 8.492 5.723
532 8284 15.048 6.667
533 8.788 12.297 8.915
523 3.241 20.880 5.878
524 4.215 11.508 14277
514 1.788 16.959 11.253
515 1.284 4713 24.002
505 1.010 5452 23538
660 35932 3511 2558
661 35915 3.576 2508
651 24.730 10.321 6.984
652 24.737 10.280 6973
612 15410 16.817 9.973
643 15.582 15.990 10.428
633 7.622 25510 8.868
634 8778 18.881 14341
624 3.328 29388 9.284
625 1503 15433 22.063
615 2.652 20.147 12.200
616 1.484 5.830 34.686
606 1347 6.219 34434
770 48921 4.087 2,992

If we now use the correct energy difference combinations, we can isolate the ground state
gy g

constants. Ground state energy differences are given by the difference betiwveen 2 P-branch and an

R-branch transition which both terminate at the same excited state J k g - Ifweconsider
_! 1

the principle sub-branch of a C-type transition , then cach transition involves AK _. = 1 and

AK 1= 0, and the ground state energy difference 15 given by
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AE= R( J-LK_-1LK.) P( J#LK #1K)) (31)

where AE represents the energy difference between two ground state levels appearing in the
two different transitions.

From Equation (25) we get

2 _cy\ -
AE=(A+C)(2J+1) + (“TC-)E_E x(J#LK_ 1K) Ex( J-1 ,K_I-E,Ki)] (82)

and from Equation (§5) we have

=[a(m,x_i;;,xé)—c{(;-;,. - 3)}5‘ ?%B( 1K -,,, 1) (}—i K_,-1K )F

A7 L I 3
?['(]ﬂ ,K_ifi X E)-'(I_l ,k-§—§ XK :)F (85)
Experimental values of AE can be used to check the values (to within rigid rotor accureces) of
A, B and C determined from microwave measuroments, before inputing them into the feast-

squares fitting routine. The results are tzbulatec in the next chapter.




Chapter 5

RESULTS AND RECOMMENDATIONS

During the course of this experiment, we scanned over an interval of 15cm-1 covering
roughly 46 P and R-branch transitions and thousands of lines. The 200 lines to which we could
.eliably assign quantum numbers were entered into the least squares program and used to perform
the curve fitting. Over 4600 lines have teen mapped using the S-Reduced hamiltonian to mode!
the molecular vibration-rotation. Since a listing of all 4600 lines would be prohibitively long,

graphical representations of experimental spectra and computer generated spectra (in the P and

R-branches) are presented for visual comparison.

The measured excited state band constants and Vg band center are presented in

Table 16.

Table 16
Measured Excited State Band Constants and V g Band Center
Band Constant Calculated value Estimated Standard
(em1) (em-1) Deviation (cm-1)
vy 887.2185 2513x10-3
A 1710 2376x102
B 1691 2624x10-4
C _ 1681 4281x10-4
Dj 5809x10~7 6425x10"7
DJK -.7969x10"7 9017x10-7
Dk .3439x10°7 3033x1677
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Table 16 (cont.)

di

.6288x10-7

.1067x10-6

d2

-.2359x10-6

.4440x107

The sextic distortion coefficients were also determined, but were found to be so small as to not

contribute to the fit to a significant degree.

Appropriate energy difference combinations of the most reliable experimental low ]

transitions of the P and R-branches were used to check the values of the ground state inertial

constants A, B and C determined in previvus microwave experiments. Equation (85) was used to

calculate A and C. B was calculated by using Equation (86) and the values of the energy

derivatives from Table 15. The results are presented in Table 17.

Table 17

Calculated Ground State Inertial Constants

Inertial Constant| Calculated Value Calculated Difference From
(cm1) Standard Value
Deviation (cm-1) given in [14]
(Mhz)
A 17138 .00018 1.8
16983 .00080 17.1
C 16762 .00221 -28.5

The values in the last column of Table 17 are a refiection of the fact that we are dealing

exclusively with C-type transitions for this vibrational band. Because for the principle sub-

branch of a C-type transition, 8K _

differences to be primarily depen
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- T and oK = 0, we should expect the transition energy

*on A for a molecule approaching the prolate symmetric




limit [see Equation (86)]. For more reliable information on B and C we would have to search for
those C-type transitions for which AKl > (. These are the weaker transitions in a C-type
spectra and would be correspondingly more difficult to isolate. That is why the error differences
for B and C in Table 17 are so much greater than the error difference for A, and the estimated
standard deviations in Table 16 are similarly skhewed. Nevertheless, the differences are still
within our experimental resolution, and we can use the values of the ground state inertial

constants derived in Reference [14] in the fitting routine with full confidence.

RECOMMENDATIONS

The TDL is still a practical tool for high-resolution spectroscopy in the midd.= IR
region. However, to reduce error, the sweep-integration method of data collection is preferable
to the lock-in method. Since the data points are integrated simultaneously, even fast scans
would be long enough to reduce the noise and prevent line smearing, thus giving spectra that are
reproducible. Experimental setups using the multichanncl integrator can be found in Reference
{15].

The next logical step in studying SF207 should involve hetrodyning a CO2 laser with
the diode laser. The P(20) line of 13CO3 (at 896.90947969 cm™Dis very close to the R-branch
transition ] = 28 — 29 and can be used to pinpoint a line very exactly. This type of experiment

would provide a very reliable method to independently confirm the results of our experiment.

68




The following 8 pages contain graphical output of experimental spectra (top of page)
and corresponding computer gencrated spectra (bottom of page). The transitions depicted here
are representative of the P-branch and R-branch transitions that were scanned during the course
of the experiment. For the sake of clarity some transition quantum numbers and frequencies have

been ommited in the experimental spectra.

69




absomtion coefficient

absorgtion coefficient

J=3-4

0.0020

0.0015

0.0010

0.0005

0.0000

+0.0005

-0.0010

0.0015

-0.0020

1 1

886.53

0.0010

888.55

888.57 888.59

wavenumber(cm-1)

888.61

0.0008 |

0.0006 |-

0.0004 K

0.0002 l"

0.0000

|

1

888.55

888.57 888.59

wavenumber(cm-1)

70

888.61

888.63




J=6-7
©¢.0020 T 1 1 i
889.5%75
624 27 348655 27 55 =634 7 4y 8655 =7 45
00010 - Be9son1 _
' 643 27536, =7,
E 8895829 8595957
2 B A
£ 00000 f -
s 8895593
8 660 —>7'708z661 —-)771
&
g
B -0.0010 \/\/\ \/JJ U\j J
(=]
N
L0
[
0.0020 | -
0.0030 L 1 L L
889.55 889.57 889.59 889.61 889.63 869.65
wavenumber(cm-1)
i i 1 i
0.0014 |- -
0.0012 f i
I=
S 00010 f i
Q
=
Q
S 00008 |- _
c
i)
g o000 -
(o]
[72]
L0
T 0.0004 a
0.0002 -
0.0000 1 [\ L. L
889.55 889.57 889.59 889,61 889.63 889.65

wavenumber(cm-1)

71




absorption cosfficient

absorption coefficient

J=6-7
0.0220 T T 1 |
8895975
575 7
824 7 34%655 7 55 634 2744 %633 27 5
0.0010 = ‘8895911 7 6 7 _
' r[ 643 27538649 =75,
8595829 8695957
655 27 62 %65 =7 ¢
0.0000 5395093 -
j 640 = 77086 1 27
Y
-0.0010 \/\/\ V\] -
0.6820 |~ by
-0.0030 . 4 L .
889.55 889.57 889.59 869.64 889.63 869.55
wavenumber(cm-1)
i i I i
0.0014 | -
0.0012 | -
0.0010 i
0.0008 |- -
0.0006 | -
0.0004 -
0.0002 | -
0.0000 ! ﬂ 1 L
£89.55 869.57 889.59 889,61 889.63 889,65

wavenumber(cm-1)

71




KX S T TE R O EE =

-
a

absorption coefficient

absorption coeflicient

0.0070
0.0065
0.0060
0.0055
0.0050
0.0045
0.0040
0.0035

0.0030

892.85

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

892.85

J=16-17

16 - 17
~ 5,12

16— 17

16 17
L0147

i

= 5,11 6,11

592.505%0

§92.93%0

§92.9258
6,12
8929145

892.9571

3,14
892.9614

892.89

892.93 89297

wavenumber(cm-1)

893.01

.

ULALIARALL

892.69

892.93 892.97

wavenumber{cm-1)

73

833.01




absorption coefficient

absorption coefficient

0.0040

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

-0.0005

-0.001C

$6.8929

9 &
1997 % 2.0

28 - 29
; i | ( ; 19,10 . ZO,IP

28

836.70 896.74 8%6.78 £96.82 896.85 89550 89694 896.98

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

wavenumber(cm-1)

'M il J.’ni jé__

83570 89674 €06.78 83682 896.86 89690 896.94 836.98

wavenumber(cm-1)

74

J=28-29
i 1 ] J 1 H
B 29 &28_ 529 _-—39‘;.‘"1. '
| “ 25 25,5 24,4 25,4 2690 28 529  &28
8969105 27,1 28,1
28 529 &8 29— ]
- 5 5 8569365 2, 29 &28
23,5 24,57 236 2,6 B .07 2 0&2
e 2 -
B9~ Pne
B 28 40 5 =% i
B » i
B> % u
B712°% 1812

27,2

28,1

—29

28,2

29,1




absorption coefficient

absorption coefiicient

J=5-4

T T T T
~ - £585.5141
314—) 404&332 —)42
S = 5555085
0.0080 5 -—)432&341 -4
0.0070
0.0060
0.0050
8555505

0.0040 L L ! L

8B85.45 885.47 £85.49 885.51 885.53

wavenumber(cm-1)
0.0010 T 1 T T
0.0C08
00008 [~
r

00004 I~
00002
0.0000 1 1 i f\ i\

885,45 £85.47 885.£9 §85.51 88553

wavenumber(cm-1)




MR O N IR O WE N U R Ea e

absorption coefficient

absorption coefficiont

=7-6

0.0060 —T1 T T ]
8318127 ”
770 —)660&771 —)661
0.0050 761 —)6_1&762—9652-
8545216

0.0040

0.0030

0.0020

55458392
33 76y
0.0010 5545263 - 2 N
‘___—_/44 -—>634&735 —;625
0.0000 1 i 1 i
884.78 884.80 884.82 684.84 884.86 884.88
wavenumber(cm-1)
i i i i
00012 "
0.C008 |- T
0000 - -
\& ;
0,600 ) 1 A A
834.78 88450 864,62 §84.64 £84.66 884.63

wavenumber(cm-1)

76




absorplion coefiicient

absorption coefficient

J=16-15
0.0040 T T ] T l
851.6579 . c . =
0.0035 ‘615,1_)1314,1&161-,2 _)1314,2
0.0030 I 8815564 = 5
161337 1545 381643 4 2155 4
00025 8517049 = . =
1641 52150 5%164; 6 21550 ¢
00020 [ 8817134 —_— -
' 1697—91387&1698—)1388
00015 | ~
0.0010 | -
00005 | 7 -
0.0000 | W 16 15 _sme 7
o (T 5,11 4,11
0005 6. —15 817704
] A1 ] 69 i I
-0.0010
881.62 881.65 831.70 881.74 881.78 881.82
wavenumber(cm-1)
i 1 ] 3
0.0024 |- -
0.6020 | -
0.0016 | N
06012 |- N
006008 i -
0c: 0 i { | -
. |
ros bowe DL A\ud 4
881.62 651.58 £51.70 881.74 83178 £51.82

wavenumber({cm-1)

77




Appendix A

Development of the Hamiltonian

To find the vibrational-rotational energies of an asymmetric molecular rotor we use a
model which treats the nuclei as point masses moving through a potential field created by the
average motion of the molecular electrons. The molecules are thought of as being held together

by semi-rigid springs whose energies are eigenvalues of the Schroedinger equation.

HY = EV {A-1)
A-1 The Classical Hamiltonian8

The form of the hamiltonian is found by first considering the classical kinetic energy for
the system of point masses. The most convenient set of coordinates to use consists of a set of axes
fixed in space ( X,Y,Z ) and a set of axes ( x,y,z ) rotating with the molecule whose origin is at
the molecular center of mass and whose orientation in space is described by the three Eularian
angles (6,9,7%). The Eularian angles are discussed more fuily in Appendix B.

Let the position of the &, nuclei with respect to the molecular center of massbe T,
with components (X 1Y o3 Z o ). The center of mass is located at a distance ffé from the fixed
axes. The equilibrium position of the @, particle, which is fixed in the movirg system, is

givenby a , (see Figure A-1).

8The theory of Section A-1 is taken frem the following References: [3] [pp. 2-6); [1] [pp. 14-17,
273-278]; {£i ipp. 260-264].
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Figure A-1 — Molecular Coordinztes. From 1] [p. 285]

We can now define the vector p, the displacement vector ,as follows:

Pe=FTg—2g {A-2}

If the instantaneous angzlar velocity of the rotation is (3, then the velocity of the &

J g
particle is described by:
Vi R #(Bx7) +7, (a4-3)
where
Ve =Tg (A-%)

The first term represents translational velodity, the second the velodity of rotation, and the

third the velocity of vibration about the equilibrium point. The kinetic energy of the molecule

is




L)

2 A - , - 4

g ‘“

e

2RV 20 (P x V)] (A-5)
Since we have defined t..e ( x,y,2 ) axes to be a center of tnass system, it is true by definition that
;m «Ig=0 (A-6)

Taking the total differential of T (T, is a function of rotation and vibration ) with respect to

time gives

)
il
™M
=
Q
Lo
R
1
SN
=}
[»]
—
e
X
1]
R
N’
+
<
2
1]
et
X
M
=
[o]
1
R
+
=M

mava=%mava =0
(A-7)
Since the atoms in the molecule are all vibrating about their equilibrium positions, the

rotating axes cannot be attached to the rotating coordinate system in a definite way. However,

to ensure the rotating axes actually rotate with the molecule we can imprse the condition

zm (g XTy)=0 (A-8)
o

This is almost the . me as stating that there must be no angular momentum with respect to the
body-fixed, rotating system of axes. We take the total differential of Equation (A-8) with

respect .0 time:

0=2m0[(3ax Fu+-‘}a) +(3ax Vu)]zz‘,ma(w xaa)xra'*'zmaaax (00 xFq)
o o<
+Zma(é’axi‘/a)=zma"axva (A-9)
o o
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Using Equation (A-3), Equation (A-6), Equation (A-7), and Equation (A-9) to modify Equation

(A-5) leaves

) 2
2T=R M+ D mg(B xTo) - (D xTo) + 2 mo(Vy) +20(Pg XVe) (A-10)
o o

where M= Zm o
Disregarding the translational term and noting that by expanding the determinant form of the

cross product we get

- S 2 2 2
gma(mxra) : (coxrm)=1xxwx+Iyyo)y+Izmz—ZIwaxmy—ZI)ZcoycoZ

— 2, 0,0, (A-11)

and the kinetic energy becomes
2T =1 402+ 1,03+ 1,02 - 21,0 ,0,~ 21 4O 0y~ 2 40,0
TlaxWx T lyWy T 1z2W, P yW 2 xy®PxWy 2 xWz

-02 - - - - - —
+Zmava+2mxzma(f)a » Voz)x'*' zmyzma(pa x Va)y"'zmzzma(pax Va)z
o o ) )

(A-12)
where Ixy, Iyyr Iz2, Ixy, Iyz, Ixz are the components of the inertia tensor
L
I={Ind iy
1,11
Ty = (A-12a)
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To deal with the coupled terms in Equation (A-12), it is necessary to treat the vibrations

of the atoins as small displacements about their equilibrium points. The kinetic energy is then

given by

N ax, ¥ (day N rda
X y
=S (@) ()]

Az

where Axa,etc. are the components of 5 Let us now replace the coordinates AXI, e B2

by a set of mass - weighted coordinates q; , ..., q3p defined by 4 = .,/ m, AX, ,

q,= /m] Ay', 4z =, /mIAZ], q4=,,/mZAXZ,etc.Thekineticenergy now
becomes
3N
2T=Y4° (A-14)
i=1

The potential energy V, a function only of the small vibrational displacements, is now a function

of the q's. We can, therefore, expand V as a power series in the gi's.

=1\ 'i/q; ij=1

3N v 3N 82V
q.=0 ) q,=q’=0

Adjusting the zero point of the energy to be the equilibrivm point and noting that, at

A -0
equilibrium, aqi , we have
q,=0
3N azv
2V= izi;"fiiqiqi , where =(3qiaqj] (A-16)
q.q.=0

1Y)

In deriving Equation (A-16), the higher order terms have been neglected.
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Newton's equations of motion are written

EE + —‘; = j=12,....3N (A-17)

since T is a function of the velocities only, and V is a function of the coordinates only.

Substituting T and V from Equation (A-14) and Equation (A-16) into Equation (A-17) gives

3N
4+ Xfq=0 123N (A-18)
i=1

A solution to this set of 3N simultaneous second-order differential equations is

1 \
=A ( 2 (A-19)
q;=4A;C05 A -H-ZJ

By substituting Equation (A-19) into Equation (A-18), the following set of equations result

3N
lzz‘;( fij - Bij?")A i 0 j=12..3N (A-20)

where 5 y is the Kronecker deita. Non-trivial solutions for A, correspond only to those values

A for which the following secular equation is satisfied

(f1,1'7‘)'f1,2'f1,3""' f1,3N

fz,l’(fz,z - }‘) ’f2,3 f2,3x‘~' =0 (A-21)

f3N,1’f3N,2’f3N,3""’( f3N,3N B }‘)z

When we choose a certain value A = A . 5O as to make the above determinant vanish,

the coefficients A, =A:k are determined for that particular value kk - Since the above system

of equations does not determine Ak uniquely, but gives only thcir ratios, arbitrary solutions
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(which are unique) can be designated by the quantities I;} *hich are defined in terms of an

arbitrary solution A'jk as follows

A"
1 = _____1_}‘:___
ik ! -

, Vi (A-22)

[%x4)7]

1
The advantage to this is that the amplitudes are normalized such that
2l =1 (A-23)

Note the secular equation (A-21) consists of 3N rows and 3N columns corresponding to 3N

unknown Aj's and 3N unknown eigenvalues kk . There are however six roots which are zero,

corresponding to the three normal coordinates of t-anslation, and three normal coordinates of

rotation, leaving only 3N-6 non-zero roots (corresponding to the 3N-6 normal vibrational modes).

This fact, along with the normalization relation (A-22), allows us to define

3IN-6

Mg bx o = Ellaka

3N-6

A/ Mg A}’a = Elraka (A-24)
k=

3N-6

Vigsz,= Yn,,Q,

~

Sim o= S/l 1 4 y2 4 72 302
k
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Now the coupling terms become

3N-6
gma(ﬁax:".a)x=§ma(AYaAlza—AzaA }.'a)= kz—l Sk Qk

3N-6
Ymo(PyxVy) = 2 R, Q (A-25)
a y k=1
3N-6
Zma(ﬁaxva) = Rka
a k=l
where Sk=zlma(ra1nak_nal‘ak)Q1
a,
CRk= Zlmﬁ(nallak —lalnak)Ql (A-26)
a,
and Ry = uzlma(ialrak_rallak)Ql

The kinetic energy is now

2T +1 04 +1 0% +1,

a2 _
y 1,65 ZIkycoxm

y~ 2,00, 21 0,0,
a ¢ a2 : . . .
+2wx§Jka+zmyZ%ka+2wz§thk+§Qk (A-27)
k
We will find it convenient to have the kinetic energy expressed in terms of angular

momenta, rather than anguiar velocitics. The total angular momentum is a vector whose

properties arise from its definition
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P=3m ¥ xT = 2my[f, x(dxT)]+ dm (T, x7,) (A-28)
o a [+

By expanding Equation (A-28) or by noting P’ , = 580_’)1‘_ ,.etc., we have
X

Py=lq0,-1 0,-1,0,+38 Q

= - N - g A-29
Po=-Tg0,+I 0 -1 0 +3% Q (A-29)
P,=-I,0,-1,0,+1,0,+>% Q

The momentum conjugate to Qg is

1

an

Solving Equation (A-30) for QQ, and substituting the result into Equation (A-29) yields

k

Pr=Tn0y—Ty0y~T,0,+33 (p, -3 ,0,-% o,- R, 0,) et (A-31)

It is now convenient to introduce the following definitions
1 2 ] . -—
I >o<=I>o<_sz; I xyzlxy"'ESkg{k; px"ESkpk
1 2 1 —
Iyyzlyy—Z%k;I)fIﬂfZﬁthk;py-ZSKkpk (A-32)

] 2 ] — > —
I'p= In_Exk;I :Q"'le'*'E“kSk ; Pz= zxkpk
We can see from their definition. that Py py, P, are functions of the vibrations alone. Asa

result they are often called components of internal or vibrational angular momentum.

Substituting Equation (A-32} into Equation (A-31) gives
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(Px—pyx) =I'yo, “I'yoy-Tg0,

(Py“py)=—I'xy‘°x+1'yy‘°y"rﬂ‘”z (A-33)

(P—pr)=—-T'yg0,— I'poy+l'z0,

The inverse transformation of Equation (A-33) is
mx=uxx(Px_px)+uxy(Py_py) +u>e(Pz_pz)
wy=p~yx(Px—px)+uyy(Py—py)+”)2(Pz_pz) (A-34)

mzzuu(Px_px)'*'“zy(Py_py) thL(P,-p,)

2 Coe o
ror. - N S N S
s y z7 vz __zax"we 'yl e
where Wy = = ,!“va 2 M= 3
I, Pyzsl' I v c o 2
IR Mz g Pxl'yy Ty (a35)
Hyz A ’p'w A s Bz A
%I'n,—llxy,_llmg
o ' C i
and A=i=Ty,l'y,-Ty

~Lg=T 1.

Substituting Equation (A-32}, Equation (A-33), and Equation (A-34) into Equation (A-27) shows

the kinetic energy as
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2 2 2 g
2T=P~>o<(Px_px) 'Hl;vy(Py"py) +uz(Pz_Pz) +2p~xy(Px"px)\Py_py)

— 2
+ 2“}2<Py % y)(Pz_ pz) + 2p’znc(Pz - pz)(Px - px) - zpk (A-36)
Note that the U gg are functions of the normal (vibrational) coordinates only. The classical

hamiltonian is complete when V is added to Equation (A-36).

A-2 The Quantum Mechanical Hamiltonian?

Because the total angular momenta Py, Py, Pz, in Equation. (A-36) were not derived
with respect to any conjugal coordinate system, we cannot transform directly from classical to
quantum mechanical hamiltonian. Thus we must derive the quantum mechanically correct form
of the hamiltonian in an arbitrary coordinate system.

In most normalized coordinate systems, an element of differential length in n dimensions

is characterized by the expression

d52=h1 ldq¥+h22dq22+ R +hnndq!2'l (A-37)

For an arbitrary coordinate system of n dimensiens, a differential clement of length is given by

2__ 2 [ e e = . 2 . 3 2
ds —g”du' -x-2g‘2du,ciu2 : +g22du2+2323du2du3+' -+ gppduy
n
=2gijdurdus, gij =gji (A-38)
i,j

where the cocfficients gj; may be functions of the coordinates. The transformation of the

Schroedinger equation for a sing’e particle from the n-dimensional coordinate system

9The theory of Section A-2 is taken from the following References: (5]; [1] [pp. 279-283]; (6]
(pp.262-263].
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represented by Equz ‘ion (A-37) , to the n-dimensional coordinate system given in Equation (A-38)

is

noza( 7.0, 2
L em —
28°ms’s’w ~":z‘(E—'\’q)\'fq—U (A-39)

where

811812 " 78in i
-1

> E2r822" " "82n|
- 2 .. . = - o= a (A'40)
I - frqgandu, du =t w8 |
g n]’g nz’- T ’g nni
The corresponding normalization for ¥ is
” - Iwu\y;du'duz- --du, =1 (A-41)
Equation (A-40) and Equation (A-41) imply
1
Vgq =g4\"u (A-42)
ol
23
Substituting from Equation (A-42) into Equation (A-39) and multiplying through by _ h 25
m

gives
n =t 1
1 2
im_zg ;zu—_{g g T}qu‘;lu)'*'vu\"u"EWu:G (A-43)

h_g
Replacing the differential operators |3 by the comesponding momenta and absorbing the m

into the determinant gives the hamiltonian in the correct fcrm fo: arbitrary coordinates
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1 i3
H=3g Zpig g)pqu-i-V (A-44)

Notice that the potential V is unchanged from its classical form because it is a function of the

coordinates and not of the momenta.

For the hamiltonian in Equation (A-44) the kinetic energy is given by

2T = zgu q i q j (A-45)
L]

or in terms of the momenta

i
2T=38'p P, (A-46)
1}
The coefficients gij are elements of the matrix which is the inverse of the matrix formed by the
Bi and the momenta pj are, of course, conjugate to the generalized coordinates g;.

Transforming now to a set of momenta P, which are not conjugate to any set of

coordinates, but are instead defined by the expression

P = %s P (A-47)
2T= DG PP, (A-48)
oW m,n
mn _ 5]
G™=3s gl (A-49)
where wedefine ki

We must now determine under what conditions a quantum mechanical hamiltonian may be
written in a form analogous to equation Equation (A~4), but in terms of the momenta Py,

namely
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1 —l l
H=4G" PR G™G’P,G* +v (A-50)

where G = QG mn

To find these conditions, substitute Equation (A-29) into Equation (A-50) and the expression

=2s™p, (A-51)
i

which is the inverse of the transformation Equation (A-47).

We derive the result

1 1 -1 1 1

Z 'i K, 2 -1 Z 2 (A-52)
Ys™ps, 8 gispgis? v
ijkm

Nl.—

nj
. 2 = — -
by noting that G =5°g and ;s In® 51; swhere S=75 .

For Equation (A-51) to reduce to Equation (A-14) the condition

-

1 -

1 ud | A5

22 -_ssz (A-53)
%41

must be fulfilled.

If the kinetic energy of the rotating-vibrating molecule was expressed in terms of the

Eularian angles, 6,0,% and the normal coordinates Qy, together tith the conjugate momenta
PgPg Py and P.: the hamiltonian operator could immediately assume the form of
Equation (A-$%). But the kinetic energy is expressed in terms ¢f
P x)’ (Py -pP y) ’ (Pz -P z) and Py- We therefore need to apply the condition
Equation (A-53) to the transformation of the momenta Pt Py P and P i tothemomenta
found in Equaticn (A-36).

To achieve this transformation, we first note that the total angular velocity vector can

be svritten as (see Figure A-2)
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=0+3+7=0,it0,jtok=0,i+0j taok (A-54)
where the componentsof @ are
o, =i-0=i-8+i- 3+i- 7 (A-55)

Figure A-2 -- Components of Total Angular Velocity . From [1} [p. 251]




From Figure A-2 we see
@, =siny - 8 —sinBcos ¥ - ¢

wy=cosy -6 +sinBcos - O

with the inverse transformation
6=siny -0, +cos 7 O,
O=—-cscBcos - Wy +cscBsiny -0,

¥=cot8cos 7 -, —cot Bsiny - @, + @,

Recall that
p O _dL 30 T sid @ .09
xT e, T la; T e, o, o Pe” i Po”

From Equation (A-57) weanfind 35, etc. resulting in
x ~r

P, =sinypg —<sc 6¢0s zp, + cot 8cos Py

Py = cos yp, + csc Osin yp,— cot Bsinyp,

Pz=pz

From the definitions of px, Py, pz in Equation (A-32) we have
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(A-36)

(A-57)

3
Jo Py (A-39)

(A-59)




P'y=(Py—py) =sinyp, —csc 6cos xp,+ cot Ocos xpy —ZSkpk
P'y =(Py—py) =cos Xp, + csc Osinyp, — cot Osinyp 5 —Z‘Rkpk

P:z= (Pz—p;;)=px—zx kpk (A-60)

Py =Py
We have now found the coefficients smj of the transformation Equation (A-51). The inverse

equations are
Py = sinyP' +cos xP'y + Z(Sin xS + cos xR, )p,
P, =—sin6cos XP' + sinBsinyP'+ cos 6P,
+ Z(- sin cos 3, +sinBsinyR, +cos 6K Ip,
py=P,+ 2R p, (A-61)

Py =Py
giving the coefficients siM of the inverse transformation Equation (A-47). Rewriting the

condition (A-53) as
s ps kms'1 =0 (A-62)
ikm

and noting that p; is a differential operator allows us to write
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Ysmis (psl) +s7 zsmi( P un) = Y(ps)+sYs mi(pék:s km) =0
: . i im

ikm ikm
(A-63)

It has been shown that the above condition is satisfied for the case in hand, allowing us to write

the quantum mechanical hamiltonian in the form of Equation (A-50)

1 - Ll 1 a 1
H=ou" ) (P, ~Pg) gk i (Fe —pg‘)“4 * %”4§’pk“ “p eV (aen
88’

As an aside, we stop here for a moment and quickly derive the hamiltonian used as a
starting point in the rigid rotor-harmor.ic oscillator approximation presented in Chapter 2. This
approximation begins with the hamiltonian (A-64), which is completely general and contains
no approximations. The first approximation we make js to neglect the dependence of K and

[ gg' On the no—1al coordinates [see Equation(A-35)]. This means they are now constant, and are

not affected by any operators. Thus Equation (A-64) reduces to
-1 - - 1 2 .
H= ZZ.ugg'(Pg Pg)(Pg~P,y) + 2P +V (A-64a)
88 k
Next we perform a unitary transformation to ensure the axes moving with the molecule

coincide with the principle inertial axes of the molecule at equilibrium, thereby causing the off-

diagonal terms of the inertia tensor to vanish. We also neglect the terms of the form 23 REK k

since, by definition, they depend on the squares of the small vibrational displacements [see

Equation (A-26)]. Then the terms I'yy, I'y; and I'y, arezero,andI'y, =1, I'yy= Iyy and
I';,= I, [see Equation. (A-32)]. The terms U gg now become reciprocals of the principle rigid

moments of inertia and the hamiltonian is now as shown in Equation (1).
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A-3 Perturbation Treatmenti0

A more convenient form of Equation (A-64) is

1 1 1 1 -1 1
_1 _ 1v,,4 2 4, 15,4 2 r
H= 32k, PeP,. %thguZu Pgh gt 2Pt + 520 p n 2 p ot +vV
g8 g8 k
(A-65)

where

-1 1 1 =1
h =l ( 4 . 4 4 4)
o %u HogP bt +1tp st 1

The hamiltonian in Equation (A-65) can be divided into three terms: H,, ,a purely vibrational
term consisting of the last three terms of Equation (A-65); HE ) which consists of those parts of
the first term which are diagonal in the vibrational quantum numbers; and the perturbing
hamiltonian H', which includes the second term and those parts of the first term which are not
included in H; :

We now make the following approximations: the wave function ¥ yR can be written as
the product of the two independent functions ¥ v and ¥R where Wy are the orthonormal
solutions to the harmonic oscillator hamiltonian, and ¥R dcpends only on the rotational
coordinates. In this manner, H, and HE are diagonal in V, but not necessarily in R. If we
expand VYR for an asymmetric rotor in terms of the symmetric rotor basis functions
(see Appendix B), wesee W is not diagonal in K.

Before we apply a perturbation treatment to H we must take care of the off-diagonal

elements of H' in the vibrational matrix. We do this by performing a unitary transformation

10The theory of Section A-3 is taken from the following References: (3] [pp.33-37]; [6] [pp. 263-
266); [25] [pp. 277-281).
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which will remove to first order in A the off-diagonal matrix elements of H', while preserving

to first order in A the matrix elements of H' that lie inside the diagonal blocks (see Figure A-3).

ser A ] B2 DZa2a2
A BN ke
A ANNNEYY ek
kkkfﬁ%&lkk g 1grargx
AAIN MBS A2 ChZhe i eheh2
ANNNN: NN
Maaaa BRI e ae]ae e
VA EE REhEpEhEne e

Figure A-3 -- Matrix Representation Of H'. From (3] [p. 34].

Thus the elements of H' which are outside the diagonal vlocks are of the order 7\.2 and

contribute to the energy only to fourth order in A. These elements can be neglected in second

order perturbation theory. This unitary transformation is known as the Van Vleck
transformation.

A unitary operator can be expressce as

U=exp (irs) (A-66)

where S is hermitian. We transform H as follows

- 252 .33 29
G=U 1HU=[I—i7xs— kz‘“ +%+- --1H°+PI;+H':[I+i7Ls—£2—S——---]
2 3
=Gy +AG +X G +A°G +- - - (A-67)
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Equating like powers of A gives

Go=H,+Hp
G,=H'+ i[(H°+ Hy)S- S(Ho+ H%)]

G, = i(H'S - SH) + S(Ho + H3)S - 3 (Ho+ H)$” + S*(H,+ HY) | (a-68)

Now let the rotational sub-block of interest be labeled by |V;JKM) and indexed byi k,

Letc., and the levels of the other rotational sub- blocks by o B' Y and so forth. The Van Vleck

transformation must satisfy two requirements. Requirement one is that {jG 1h<) = {jJH'|K) or

0=({(H,+H})S - 5(H, +Hy) fly = (E,~E (s cae9

This requirement is satisfied by

(jslky=0 (A-70)

- - [ J -
Requirement two is that <JIG 1|OC> vanishes, or

0 = (fH'0) + ([ (H, + HY )S — S(H, + HY ) Jo) = (jHe) + i(E; - Eq) (]Sl
(A-71)
which implies
i(jiHa)

(jSly= ¢ (A-72)
" o

Thus we have determined the nature of the hermitian operator S that generates the unitary

transformation. Now by applying Equation (A-70) and Equation (A-72) to Equation (A-67) we
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can determine the matrix elements of G within the same (2j X 1) X (2j X 1) block [V;TKM)

to second order
(JGojky = (j|H, + Hpjk) = E;8,
(jG Jl = (jHK) (A-73)
[%(Efg k)'E“]( fHia) (ol HiK)

GhEED)

2
Now the off-diagonal sub-blocks contain terms only of order A~ and higher and can be neglected

(Gl =2
¢

in second order perturbation theory. If more accuracy is desired, G can always be subjected to

another Van Vleck transformation.

If we now neglect the off-diagonal elements of H in the matrix V, the remaining

diagonal terms each factor into smaller matrices, one for each vibrational state, whose elements

<R;VIH]R ",V) are labeled by the rotational quantum numbers only.

Using standard perturbation theory, we can write

H=H,+H+H' (A-74)

where we can expand the perturbing hamiltonian H' to second order in a power senesin A

(A small), that is

H'= AH,+ A H), (A-75)

The zeroeth and first order terms are given by
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(RVIH, + Hy + \H[R'V) = (RYH R V) + RVHS +AH[R V) =

Bt 380 RYPyPy V) - AT )R VPR V) (479

Ey is the vibrational energy, diagonal in R and V, whose diagonal elements are Ey. The last two
terms come from the fact that H 88" and hg are functions only of the vibrational coordinates [see
Equation (A-33) and Equation (A-65)] plus the approximation ¥ yg = V¥ y¥g.

We can further simplify Equation (A-76) by noting that, since hg is pure imaginary
(cach operator pg carries one term of -ih and all other terms are real), and because H and Pgare
hermitian, the matrix <V!h ng ) is hermitian. Also for a non-degenerate asymmetric rotor,
the Wy are real. Hence the diagonal term

(V]hglV) = (Vih g V) = (Vi V) = = (v

h giV) =0 (A-77)

The second order term is given by

2., a2 (VRIHIV'R"XV 'RiHIVR)
NHy=4" Y, = (A-78)
R.vn A\ (O

V2V

Here we have assumed the rotational spacing is small compared to the vibrational levels so
(o4 o [+ o R - .
that Epy; — Ep.y. canbe replaced by Ey — E,,.. Equation (A-78), when multiplied out will

give us the quartic, cubic and quadratic terms of Py, P y and P,. The coefficients of the terms

3 3 3
Px , Py and P'z are of the form

) oo “h IVya(V.h V" - )
1o VhggVIUVIRGVIF(VR o VIRV V)
2 E-E (A-79)
V- v v
VaV~
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They can be shown to vanish by noling that, since hg is pure imaginary,
(VihggV = (Vlhg!V") ;and since [Lgg is a real operatoer, (VIrgg| V") = (Vi gglV).
The rest of the cubic terms are of the type P;% P,-P ypi , ete. These can likewise be
elimipated by use of the comsnutation rules [P P j} =t 3k P K at the cost of introducing extra
quadratic terms.

Thus. as ~ result of the perturbation treatiment, the rotational matrix

e, ' . R . . . .
H=H,+ Hp + H', which corresponés to a single vibrational state can be written as a

poiynomial in Py, Py and P,

4

gl

= p 1 + 1 s . .
H=E,+ 2%’,(133])51)5' = J N A (A-80)

where & __.and T

g8 gg'ji’ aTe functions of the vibrational state only. Note also that

Vi VUV I V)
r = el 1 it A
28 EvE,. (A-81)

Vv v

V=V~

A-4 The Reduced Hamiltonian

The form ¢f the hamiltonian in Equation (A-80) has several drawbacks. First, if further

azeuracy is desired, higher order perturbation must be cunsidered, which could becoine extremely

cumbersome. Also, not ail the cocificients agg. ang T 88’ are determinable. If all the

consiants in Equation (A-80) were kaown, it would be a straightfurward process, in principle, to
determine the energy levels from them. However, the situation that we are faced with

experimentatly is the reverse of this; we wish to determine, from observed energy levels, the

TThe theory of Section A4 is taken from the following References: [4] [pp. 2-80]; [18); [17] [pp.
1935-1947].
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values of the rotational and centrifugal constants. The problem in carrying out this reverse
calculation is that not all constants or combination of constants contribute to the energy levels
and are therefore not determinable from them. For example, neglecting the quartic distortion
terms in Equation (A-80) allows us to write the rotational hamiltonian as

15
HrOt ) 'aggJ gjg' (A-82)
g8

where agg' are related to the values in Equation (A-35) , for the particular vibrational state

and the symbol J now rapresents the total angular momentum. We can reduce the matrix &__. to

88’
diagonal form by a simple rotation of axes (to a principle axes system) giving us the reduced form

of the hamiltonian

2, r2, 2 .
ng=xjx"'xfy"'z]z (A-83)
1
where X, Y, Z are the principle values of 50& 88" It is obvious that the rotational energies

1 1
depend only on the principle values of 5 agg' and all the other coefficients 3 _ . are not

88

determinable from those energies. Therefore, to obtain increased accuracy and to determine ail
the coefficients in the hamiltonian, it is necessary to write the hamiltonian in another form.
The hamiltonian in Equation (A-80) contains such terms as JxJ2J ¥ with individual
terms appearing in any order. By using the commutation relations [J i’] j] = em( J k wean
) 1/:P94r 277 q.P
rewrite such these terms in the form 5 Jx] yJ 2+ ]2) }J x J + terms to lower degree in . For

example

T Jddy =3 a1 05%) + - 2005 +7202) = 20 J 2+ 1. ) ase:

The terms of lower degree can then be changed in the same way, and the process can be repeated

resulting in a2 sum of terms of the following form




. O -

lwg! l

LB

l

P.9 q.p
Hy = 2 hpe T3 +190Y) (A-85)
qu'

where the coefficients hpgr may or may not be complex.
To simplify further, we note that the rotational hamiltonian, of a given vibrational

state, is invariant to both operations of hermitian corjugation and time reversal. That is

8 -1 -1 -
Hrot =Hmt +THmtT =(THmtT ) (A-86)

where the symbol U represents the adjoint of the operator. in addition, the operators J and the

coefficients hpqr have the following properties
- \“r . -1 =
' =] T =] hpgr=hjg Thpe T ' =hig (A-87)

Equation (A-86) and Equation (A-87) together give us

Hy, = > hoe U0+ 1 %5)

-1 p+q+r. . P.9q q.p
THmtT = qu:l_(_ ) N pgr (I x v]; + I;J y] x) (A-88)

4 +q+r
(TH,T7) = %(_Dp e ORI 4TI YR)

The last equation of (A-88) shows that since terms of odd degree in p+q+r change sign under
operations of time reversal and hermitian conjugation, they do not satisfy the invariance
relation (A-86). The first two equations of (A-88) show that the remaining terms of even degree
satisfy the invariance relation only if the hpgr are real. We now have a simplified rotational

hamiltonian
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P.9.r r;49.P
Hrot= 2 hpqr(]x]y]z""];‘]y]x) (A-89)
p+q+r
even

where hpqr are real. Note that the coefficients of the terms of degree greater than two are the

centrifugal distortion coefficients for a particular vibrational state of the molecule. One further

simplification can be made by noting that for molecules of C 5 (orthorhombic; symmetry the

only non-zero terms in Equation (A-89) are those with p, g, and r all even, giving us

P.d.r r.9.P
Hmt = z h pPar (I xJ yIz +JJ y] x) ,hpq,— real (A-90)
P.q.T
cven

If further accuracy is desired, we can just extend the power series to any degree in J that

we want. For the purposes of this experiment, expansion of the power series (A-90) to the sixth

power in J is needed. With a slight change in notation we have

Hy = YBoat %TQBI?&IE + TOooalut Escbmﬁ(liﬁ, +]e)
«, o=

2 2 2 2.2.2
¢xyz(]x+]y+]z+17jy]x) {A-91)

2
where the coefficients are real and T op =Tpa' Intermsof J , Jzand J + we have
2 2 23> 2.2 1 n3 n 2o
Hm=[82w] +B o o+ Ty (17) + T, 005+ Toyy )5+ @, (5% +0,,(0%) J;]

2
2.4 6 .1 ) 2 2 2\~ 2.2 4
0, 1T+ 00 J5+ B + Tap) + T J2+ @ I7) 0,175 + 0,07,

-
.

2.2 1 _ 2 2.4 4] . 6 . .6 §
P2 2] o ol To + 012+ 0 131 41E] + 0 (18478)  ao
where [A,B] . Fepresents the anti-commutator AB + BA and the subscripts on the

cefficients now refer to the powers of J.JzaneJ - respectively. To go from the form of the
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Hyot in Equation (A-91) to Hyot in Equation (A-92) requires repeated use of the commutation

relations [I ;J i] =€ ijk J k - For each constant, terms of higher degree are negligible therefore

neglected. With this in mind the relations between the constants in Equation (A-91) and

Equation (A-92) are given in Table A-1.
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TABLE A-1
Relationship among constants in Equatior. (A-91) and Equation (A-92). From [4] [p. 21).

1 1 .
Bzoo='z'(Bx+BY)“4T004 ®oz4“s(¢m+¢yw'(pxy2)"‘bzo4

By =3(Bx—By) ‘Dws=6‘ltx((bm‘(byyy)"%(d’w‘¢wx)
By =Bz~ By + 6T,
T 0 = 5(3Tx +3T, +2T,)
T =(Te+Ty) - 2T,y

T =Tz~ T = T

5 1

P = 16(Prox + Py ) + 5(P oy + D)
3 1

Puzp = 1(Proat Pyy) + 4P =30

Poso = (Pax + Py ) = P, =30

Pogo = Pz - P Py ~ D0

1
Pn = 5 (Poocx = Pyyy ) + 55(D gy ~Dyx)

o = 2(Pox =Py ) =Py =D,
=3 -1
P04 = 3(Proex * Pyy) = 16(Pry P yyx)
We still have the problem of which constants or combination of constants contribute to

the energy levels and can therefore be determined from them. We can solve this problem by

noting that the eigenvalues of the rotational hamiltonian are unaltered when the hamiltonian
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is transformed by an arbitrary unitary operator [the transformation from Equation (A-82) to
Equation (A-83) is an example of such a unitary transformation}]. If we construct the unitary
operator as a power series in the total angular momentum ] and other parameters, then the
transformed hamiltonian will be a power series similar to the original hamuiltonian, but with
coefficients depending on the parameters in the unitary transformation. Because these
parameters are arbitrary, we can choose the unitary operator in such a way as to eliminate as
many terms as possible from the transformed hamiltonian. The coefficients of the remaining
terms are the maximum number of terms which can be determined from the experimental data.
The situation is not quite as simple as described above, but we can still make a meaningful
transformation by considering orders of magnitudes of various coefficients involved, and
discarding terms which may be negligible. Details of this process can be found in Reference (4].
A hamiltonian subjected thus to a unitary operation is called a reduced hamiltonian.

We wish to construct a reduced hamiltonian H ot With the same eigenvalues as H,-

The reduced hamiltonian is given by

4 _ _‘l .
H ,=UH_U (A-93)

Recall that the most convenient form for a unitary operator is

U= exp(iS) (A-94)
where S is hermitian. To make H ot invariant under time reversal, we must make U invariant,

which requires that S change sign under time reversal. Therefore, if we express S as a power
series similar in form to Equation (A-85), we sce it has real coefficients and contains powers of

p+q+r=0dd only.

P.9,r q,P
S= Y s (JUL+TI %) (A-95)
p+q+r
odd
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The exact structure of S, and therefore of U,depends on the symmetry of the molecule in question.
Details of the arguments and exact forms of U and S can be found in Reference [4].
As a result of these arguments it has been shown that for molecules of orthorhombic

symmetry, the hamiltonian of Equation (A-91) can be transformed to an analogous form H rot 2Y

the following changes in coefficients

’

By=Bx-4(By-Bg)s;

l4

Doy =Py =2(Bx=By)sz ~4Tux— Tiy)Sq —4(Bx “By)sfu (A-96)

D gz = P +2(Bx —B )5, + T —~Ty)s, —4(By -Bz)s§11
D gz = Puz =6[(By=B;)s 3 + (B2 =B )sy3 + (B = By)s ]
where S 111, S oy, $ 131 -and S5 are coefficients from Equation (A-95)

H ., of Equation (A-92) can also be transformed to an analogous form H ot Dy making
the coefficient transformations indicated in Table A-2. Note the coefficients S 11+ 311+
S157 and S 13 have been replaced by the parameters P, X, K and vV which are also defined

in Table A-2.
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TABLE A-2

Coefficients of the Transformed Hamiltonian. From [4] [p. 331

B'o0 =By 4P Bo20 = By — 14p B'002 = B oo
Tyoo'=Tap =20 Top'™=Toy +12p T

T =Tw T'022 =T ~40p T
Ps00=Pe0 ~?

=2T_  +4cT__ -8T  -16p)p
Q=@ —20h+10v+ (o 13202 oo ')

222 002

- -8( 52-
[4T040+40T022+8T004 8(o 3)p]p

B
002

(I>'042 =@y, — 200 — 9V +

o
|
S
+
1o >

-4T
( 4 022+I6GT004 +16op)p

® 02
L6} 6=(D
P=B S W=B o, (281~ - S131) T 2T g 843~
A=B o (San * 1) + 2T yp Sy

)+2T + B

=1 2
V=3B o (311~ Sqm 0045111 ¥ P02 S1n
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The reduction of the rotational hamiltonian is completed by making appropriate

reductions of certain coefficients which will fix the parameters P, A, L and V. Because

SF207 approaches the symmetric prolate limit, we need to consider a reduction that stays finite

in this limit. The choice we make is called the asymmetric top reduction or the S-reduction.

This reduction is obtained by the conditions

/ 7 ’ ’

T =P =Py =Py =0 (A-97)

These conditions are solved to give the values of P, A,Hand V given in Table A-3.

The form of the S-reduced hamiltonian is
2
H o =875+ 515 +8073 -0 () 13- gt
2(:2 2 4 4 2 3 2 2 2 2+4
+d 7205 +12) +d, (13 +1%) + H (1) +H (%) 15+ H 1S
2
+HJ5+0 (77 (3 +72) +0 %08 +78) +1,(58 +7%) (A-98)

The relationship of the coefficients in Equation (A-98) to coefficients from previous expressions

of H _, is given in Table A-3.
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TABLE A-3

Constants of the S-Reduced Hamiltonian. From [4] [p. 35].
BY =B, -4Ty, + (2407 )Ty,

(s) _

-1
By =B,-4T, -(2-¢ )T,

004

(s) _ _ 5
BY =B,+6Ty, - 20T,

_ 1 -1 - = -1 _ S -1
“Dy=Tyy =39 Ty D =Ty ¥307 Ty Dy=Typ =39 Top
d,; =Ty, dZ—TO(M+%c;‘1T(m Hj=d)600—7&

Hp =0 +6A-31  Hg =0, -5h+100  Hg=dy, - 71
h=¢ -v - A h,=®d,, +V
1 402 h?_—<I>204+2 3 006

1 =

p=40"Tpy

-1 T
w2y 22 _9 _ 2 - _02
p-(20 + 6 {0(1)042 o +[ 2csT040 +(c +3)T022 SGTW‘]BW}

T.. T

3 1.1 004 ' 022
v= =6 U+ 67D ————
16 8 024 B o
A=50"1+ 2+ 070, +(-5071T,, +T,, ~67T,, ~207IT o
v=90 + 5+ G0 Doy 2 20 Tlop 7O hon 740 Loy /B

020

111
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Appendix B

Wave Equation Solution For The Symmmetric
Topr2

The motion of a symmetric top is usually described by the Euler angles (see Figure B-1).

o s
.
“ /'/y m’»ﬁ’:’ %4 <
2 Whg:/»’ g’,ﬁ?ﬁ/j%::/ ﬂ{?@’/gyg{
b, 4 7 7
f/

N
-

o
:
w{a? %
;
2%

,:’ ?%/Z,;v/ //‘40 .
N
),

S
~<f;"
%7

e IO

5&;{* A
GNP O
" o ,v;«f,;‘ij,/

Figure B-1 —The Euler angles. From {25] [p. 78 ].

Now let T be an arbitrary vector having Cartesian componezs I'p = (Ty, Iy, I'5) in the

space-fixed (lab) frame and the Cartesian components I'g = ( Iy T y,rz) in the body-fixed

12The theory of Appendix B is taken from the following references: [2] [pp. 60-61]; {25] [pp.77-83);
(1) [pp. 285-286).
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(molecular) frame. Since we are describing the rotation of the sym.etric top by the Euler angles,

the two representations of the vector T are related by the unitary transformation ¢

Tp= %‘D Fg(0.00)"8
Tg = ;‘D gF(8,0,0) " F (B-1)

bw the product of the three Euler angle rotations (see Figure B-2)

oy R,.R.R

(0,0,0) ~ 2y " NCoY Z(o) (B-2)

l where @ is called the direction cosine matrix. Naturally we express the . - opewztor @

1

l
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Figure B-2 ~ Components of Euler Angle Rotations. From [25] [p. 79].

Since we can reprasenc the Eule. ingles as tha product of three rotations, we can find the

relationship between I'p and g to be as depicted in Table B-1. Becanse the D gF are the reai
. . -1 .
elements of a unitary transformation, ® _ = @_ . That means the transformation is

gF Fg

orthonormal, i.e.
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Figure B-2 — Components of Euler Angle Rotations. From [25] [p. 79].

Since we can reprusenc the Eule. 1ngles as tha product of three rotations, we can find the

relationship between I't and I'y to be as depicted in Table B-1. Becanse the D gF are the reai

. . -1 .
elements of a unitary transformation, (DgF = d)Fg . That means the transformation is

orthonormal, i.c.
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S‘cb =8

Fg F g FF'

Z(DFg Fg gg' (B-3)

and Table B-1 can be read either across or down. The entries in Table B-1 are the cosines of the

angles between the various pairs of axes.

Table B-1
Direction Cosines Relating Retating to Nonrotating Axes as Functions Of Eularian Angles.

From (1] [p. 286].

X Y Z
X cos Ocos 9cos X | cos Bsind cos ¥, —sin@cos %
—sindsiny +cos dsiny
y ~ cos ©cos 0sin /( - cos Osin¢siny sinOsiny
i —singcos y  +C0s ¢cos ¥ |
; z sin@cos ¢ ; sindsing cos 6

By examining Figure B-1 we deduce the following relations

A =n

o 'z
A =—n0_ sind+1n_ cosé 4
0 X 0] Y 0 (B-4)

N A . A . . N
n_=n_sinb + n_sinBsind+ n_co
. x 51 cos ¢ v (0] , €0s 0

By roting that the projection of the angular momeni.m J onan arbitrary axis fi is the operator

T . fal .
which generates an infinitesimal rotation O about 1, that is
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chpg Op.g = Spp

and Table B-1 can be read cither across or down. The entrics in Table B-1 are the cosines of the

angles between the various pairs of axes.

Table B-1
Direction Cosines Relating Retating to Nonrotating Axes as Functions Of Eularian Angles.

From (1] [p. 286l.

X Y Z
X cos Bcos 9cos ¥ | cos Osind cos i —sin@cos 3
~sindsiny + COos @siny
y — cos €cos 9sin )( — cos Bsingsiny sin@siny
—singcos y ~ +COs fcos l
é z sinfcos ¢ ' sindsingd cos 6

By examining Figure B-1 we deduce the following relations

A =1
o Z
A A . N
n =—n_sine+n_ cos -
0 X o) v 0 (B-4)

Fad A . N . - A
L_=n n + n_sinBsind+ n_c
. x 51 Bcos ¢ v (o} . 0os 0

By nroting that the projection of the angular momen..:m J onan arbitrary axis N is the operator

. e . . fal :
which generates an infinitesimal rotation ®p about n, that is
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(B-10)

Equation (B-10) implies

A>B>C (B-11)

For a symmetric prolate top we identify the symmetry axis (z-axis) as the a-axis, and the other

two axes as the b-axes. This gives us the hamiltonian

H= B]2+]22(A ~B) (B-12)

2
We use the hamiltonian (B-12) in the Schroedinger equation. We can calculate J” and] Z

from Equation (B-7)

9
8_2 2c0s ® & ( 1 )32
a2

sin "8 ao sin 26 aya<>L sin *9

J*=- % Sno ae(sm eae) +—=

)
Jz=-"3 (B-13)
30

Upon substitution into Schroedinger’'s equation we get

2 2 2 2
1 9/ 3 (cos 0 A)a 2¢cos 8 _9 E
——==-tsin® —-————+ ———+ = = - o taw=0 (B-14)
[ g o0\ ao) eaa sin20  BJ)3,2  ginlg 0%30 B
We assume a solution of the form
\y=@(0)eiM°eiK7— (B-15)

where M anc K must be integers to preserve the periocity of the solution. @ ©) must now satisfy

the equation
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I de ) 2 2
1 d, . (0) M cos“0 A}, 2 (20586 E _
(sine)ﬁksme o “"[“ sine_( Zq +E)K +( )KM““h_B]@(e)‘O

sin sin 28
(B-16)
By letting
X = %(1 — cos 6) (B-17)
we get
11, . ]
LIPSV Z KM
=x2 -x) -
O =X (1-x) Fig (B-18)
where F(x) is a polynomial in x.We find the equation for F (x) tobe
x(1=x)F (y + (@ = Bx)F 3 +1F (3 =0 (B-19)
where
a=K-Mi+1i
B=K+M +K-M|+2 (B-20)

E

2
_ AK 2
Y=18 "B *K

- (A M 2 M) (3K + Mi+ DK - M+ 1)

Equation (B-19) can be solved by normal power series methods. By letung F (x)= Za a X" we
n=0

get the recurrence relation

[n(n+l)+Bn-y}
A ne1= L (nell(nec) PO (8-2D)
For a physical solution the recurrence relation must ierminate which means we get for the energy
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E=BJ(J +1) + (A ~B)K? (B-22)

where

J = Nmax = 2K + M|+ 2K - M] (B-23)

and Nmax is the largest value of the integer n for wh:ch the recurrence relation (B-21) does nct

vanish. Note from Equation (B-23) that ] (the total angular momentum) must be a positive

integer such that

K=0,1%2,..,2] (B-24)
M=0£1,%22,.,%

Finally , note that K and M represent the projection of the total angular momentum J onto the

space-fixed (lab) axis and the molecule-fixed Z axis (axis of symmetry) respectively.
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